Skip to main content
Log in

Linking thermo-tolerances of the highly invasive ant, Wasmannia auropunctata, to its current and potential distribution

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Species distribution models based on the correlation of bioclimatic variables and presence spatial data-points are useful for recognizing species habitat suitability. However, they have limitations in predicting the introduced ranges of invasive species that could be overcome by using species eco-physiological traits. By combining bioclimatic variables with thermal tolerance plasticity of the highly invasive little fire ant, Wasmannia auropunctata, we intend to better understand the mechanism underlying its current and future distributions. To this end, we performed: (1) laboratory physiological experiments to assess thermal tolerances (CTmin and CTmax) and evaluate the effect of acclimation (laboratory) and acclimatization (nature) on these variables, (2) behavioral foraging observations in the field, (3) a correlative and a simple mechanistic SDM. Briefly, physiological results showed a modulation of the CTmax and CTmin by different acclimation temperatures and by seasonal thermal acclimatization. In the field, worker foraging activity begins at environmental temperatures just above (less than 1 °C) the lowest CTmin recorded in the laboratory. At the global scale, CTmin constitutes a key physiological trait that, when linked with the minimum temperature of the coldest month, could explain the southernmost limit of W. auropunctata native distribution and its physiological capacity to expand in the Mediterranean region. The eco-physiological approach carried out here may help explain the current distribution and predict potential spread of populations when there is no certain information about the whole distribution of the species or under a changing environment. The latter is of great importance especially when analyzing invasive insects, pests or disease vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SDM:

Species distribution model

CTmax:

Critical thermal maximum

CTmin:

Critical thermal minimum

VIF:

Variance inflation factor

ULT:

Upper lethal temperature

LLT:

Lower lethal temperature

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc B 267:739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modelling. Ecology 93:1527–1539

    Article  PubMed  Google Scholar 

  • Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet P, Valladares F, Chown SL (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219

    Article  PubMed  Google Scholar 

  • Ayrinhac A, Debat V, Gibert P, Kister A-G, Legout H, Moreteau B, Vergilino R, David JR (2004) Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Funct Ecol 18:700–706

    Article  Google Scholar 

  • Bewick S, Stuble KL, Lessard JP, Dunn RR, Adler FR, Sanders NJ (2014) Predicting future coexistence in a North American ant community. Ecol Evol 4:1804–1819

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne MJ, Coetzee J, McConnachie AJ, Parasram W, Hill MP (2004) Predicting climate compatibility of biological control agents in their region of introduction. In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (eds) Proceedings of the XI international symposium on biological control of weeds, pp 351–352

  • Calosi P, Bilton DT, Spicer JI (2008) Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol Lett 4:99–102

    Article  PubMed  Google Scholar 

  • Calosi P, Bilton DT, Spicer JI, Votier SC, Atfield A (2010) What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J Anim Ecol 79:194–204. https://doi.org/10.1111/j.1365-2656.2009.01611.x

    Article  PubMed  Google Scholar 

  • Cerdá X (2001) Behavioural and physiological traits to thermal stress tolerance in two Spanish desert ants. Etología 9:15–27

    Google Scholar 

  • Cerdá X, Retana J, Cros S (1998) Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. Funct Ecol 12:45–55

    Article  Google Scholar 

  • Chanthy P, Martin RJ, Gunning RV, Andrew NR (2012) The effects of thermal acclimation on lethal temperatures and critical thermal limits in the green vegetable bug, Nezara viridula (L. (Hemiptera: Pentatomidae). Front Physiol 3:465

    Article  PubMed  PubMed Central  Google Scholar 

  • Chifflet L, Rodriguero MS, Calcaterra LA, Rey O, Dinghi PA, Baccaro FB, Souza JL, Follett P, Confalonieri VA (2016) Evolutionary history of the little fire ant Wasmannia auropunctata before global invasion: inferring dispersal patterns, niche requirements, and past and present distribution within its native range. J Evol Biol 29(4):790–809. https://doi.org/10.1111/jeb.12827

    Article  CAS  PubMed  Google Scholar 

  • Chifflet L, Guzmán NV, Rey O, Confalonieri VA, Calcaterra LA (2018) Southern expansion of the invasive ant Wasmannia auropunctata within its native range and its relation with clonality and human activity. PLoS ONE 13(11):e0206602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chown SL, Nicolson SW (2004) Insect physiological ecology: mechanisms and patterns. Oxford University Press, Oxford

    Book  Google Scholar 

  • Clark DB, Guayasamin C, Pazmino O, Donoso C, Paez de Villacis Y (1982) The tramp ant Wasmannia auropunctata: autecology and effects on ant diversity and distribution on Santa Cruz Island, Galapagos. Biotropica 14:196–207

    Article  Google Scholar 

  • Cuezzo F, Calcaterra L, Chifflet L, Follet P (2015) Wasmannia Forel (Hymenoptera: Formicidae: Myrmicinae) in Argentina: systematics and distribution. Sociobiology 62:246–265

    Google Scholar 

  • Cunningham HR, Rissler LJ, Buckley LB, Urbanet MC (2015) Abiotic and biotic constraints across reptile and amphibian ranges. Ecography 38:001–008

    Article  Google Scholar 

  • David JR, Gibert P, Moreteau B, Gilchrist GW, Huey RB (2003) The fly that came in from the cold: geographic variation of recovery time from low-temperature exposure in Drosophila subobscura. Funct Ecol 17:425–430

    Article  Google Scholar 

  • de la Vega GJ, Schilman PE (2017) Using ecophysiological traits to understand the Realized Niche: the role of desiccation tolerance in Chagas disease vectors. Oecologia 185:607–618. https://doi.org/10.1007/s00442-017-3986-1

    Article  PubMed  Google Scholar 

  • de la Vega GJ, Schilman PE (2018) Ecological and physiological thermal niches in vectors of Chagas disease. Med Vet Entomol 32:1–13. https://doi.org/10.1111/mve.12262

    Article  Google Scholar 

  • de la Vega GJ, Medone P, Ceccarelli S, Rabinovich J, Schilman PE (2015) Geographical distribution, climatic variability and thermo-tolerance of Chagas disease vectors. Ecography 38:851–860. https://doi.org/10.1111/ecog.01028

    Article  Google Scholar 

  • Delsinne TD, Roisin Y, Leponce M (2007) Spatial and temporal foraging overlaps in a Chacoan ground-foraging ant assemblage. J Arid Environ 71:29–44

    Article  Google Scholar 

  • Diamond SE, Sorger DM, Hulcr J, Pelini SL, Del Toro I, Hirsch C, Oberg E, Dunn RR (2012) Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Global Change Biol 18:448–456

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Espadaler X, Pradera C, Santana JA (2018) The first outdoor-nesting population of Wasmannia auropunctata in continental Europe (Hymenoptera, Formicidae). Iberomyrmex 10:1–8

    Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Global Ecol Biogeogr 16:24–33

    Article  Google Scholar 

  • Foucaud J, Rey O, Robert S, Crespin L, Orivel J, Facon B, Loiseau A, Jourdan H, Kenne M, Masse PS, Tindo M, Vonshak M, Estoup A (2013) Thermotolerance adaptation to human-modified habitats occurs in the native range of the invasive ant Wasmannia auropunctata before long-distance dispersal. Evol Appl 6:721–734. https://doi.org/10.1111/eva.12058

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaston K, Blackburn T (2000) Pattern and process in macroecology. Blackwell, Oxford

    Book  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Elith J (2012) dismo: species distribution modeling. R package version 0.7-2. http://CRAN.R-project.org/package=dismo. Accessed 23 Sept 2018

  • Hill M, Hoffmann A, Macfadyen S, Umina P, Elith J (2012) Understanding niche shifts: using current and historical data to model the invasive redlegged earth mite, Halotydeus destructor. Divers Distrib 18(2):191–203

    Article  Google Scholar 

  • Hoffmann AA, Shirriffs J, Scott M (2005) Relative importance of plastic vs genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Funct Ecol 19:222–227

    Article  Google Scholar 

  • Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A (2015) Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Global Change Biol 21(3):1092–1102

    Article  Google Scholar 

  • Kearney M, Porter WP (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    Article  PubMed  Google Scholar 

  • Kumar S, LeBrun EG, Stohlgren TJ, Stabach JA, McDonald DL, Oi DH, LaPolla JS (2015) Evidence of niche shift and global invasion potential of the Tawny Crazy ant, Nylanderia fulva. Ecol Evol 5:4628–4641

    Article  PubMed  PubMed Central  Google Scholar 

  • Lancaster LT (2016) Widespread range expansions shape latitudinal variation in insect thermal limits. Nat Clim Change 6:618–621. https://doi.org/10.1038/nclimate2945

    Article  Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New York

    Google Scholar 

  • Mikheyev AS, Mueller UG (2007) Genetic relationships between native and introduced populations of the little fire ant Wasmannia auropunctata. Divers Distrib 13:573–579

    Article  Google Scholar 

  • Mitchell JD, Hewitt PH, Van Der Linde TCDK (1993) Critical thermal limits and temperature tolerance in the harvester termite Hodotermes mossambicus (Hagen). J Insect Physiol 39:523–528

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Penick CA, Diamond SE, Sanders NJ, Dunn RR (2017) Beyond thermal limits: comprehensive metrics of performance identify key axes of thermal adaptation in ants. Funct Ecol 31(5):1091–1100

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rey O, Estoup A, Vonshak M, Loiseau A, Blanchet S, Calcaterra L, Chifflet L, Rossi JP, Kergoat GJ, Foucaud J, Orivel J, Leponce M, Schultz T, Facon B (2012) Where do adaptive shifts occur during invasion? A multidisciplinary approach to unravelling cold adaptation in a tropical ant species invading the Mediterranean area. Ecol Lett 15:1266–1275

    Article  PubMed  Google Scholar 

  • Roger J (1863) Die neu aufgeführten Gattungen und Arten meines Formiciden-Verzeichnisses nebst Ergänzung einiger früher gegebenen Beschreibungen. Berliner Entomologische Zeitschrift 7:131–214

    Article  Google Scholar 

  • Roura-Pascual N, Hui C, Ikeda T, Leday G, Richardson DM, Carpintero S, Espadaler X, Gómez C, Guénard B, Hartley S, Krushelnycky P, Lester PJ, McGeoch MA, Menke SB, Pedersen JS, Pitt JP, Reyes J, Sanders NJ, Suarez AV, Touyama Y, Ward D, Ward PS, Worner SP (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc Natl Acad Sci USA 108:220–225

    Article  PubMed  Google Scholar 

  • Schilman PE, Lightn JRB, Holway DA (2005) Respiratory and cuticular water loss in insects with continuous exchange: comparison across five ant species. J Insect Physiol 51:1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Schilman PE, Lightn JRB, Holway DA (2007) Water balance in the Argentine ant (Linepithema humile) compared to five native ant species from southern California. Physiol Entomol 32(1):1–7

    Article  Google Scholar 

  • Sinclair BJ, Coello Alvarado LE, Ferguson LV (2015) An invitation to measure insect cold tolerance: methods, approaches, and workflow. J Therm Biol 53:180–197

    Article  PubMed  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Terblanche JS, Chown SL (2006) The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). J Exp Biol 209:1064–1073

    Article  PubMed  Google Scholar 

  • van Heerwaarden B, Kellermann V, Sgrò CM (2016) Limited scope for plasticity to increase upper thermal limits. Funct Ecol 30(12):1947–1956. https://doi.org/10.1111/1365-2435.12687

    Article  Google Scholar 

  • Villemant C, Barbet-Massin M, Perrard A, Muller F, Gargominy O, Jiguet F, Rome Q (2011) Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol Conserv 144:2142–2150

    Article  Google Scholar 

  • Vonshak M, Dayan T, Ionescu-Hirsh A, Freidberg A, Hefetz A (2010) The little fire ant Wasmannia auropunctata: a new invasive species in the Middle East and its impact on the local arthropod fauna. Biol Invasions 12:1825–1837

    Article  Google Scholar 

  • Vonshak M, Dayan T, Hefetz A (2012) Interspecific displacement mechanisms by the invasive little fire ant Wasmannia auropunctata. Biol Invasions 14:851–861

    Article  Google Scholar 

  • Wetterer JK (2013) Worldwide spread of the little fire ant, Wasmannia auropunctata (Hymenoptera: Formicidae). Terr Arthropod Rev 6(3):173–184

    Article  Google Scholar 

  • Wetterer JK, Porter SD (2003) The little fire ant Wasmannia auropunctata: distribution, impact and control. Sociobiology 42:1–41

    Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

The authors thanks Ed LeBrun, Erin Wilson-Rankin and Rodrigo Diaz for critical reading of an earlier version of the manuscript and Agencia Nacional de Promoción Científica y Técnica/Argentina (PICT2015-3491 to LC and PES) and U.S. Pacific Basin Agricultural Research Center, USDA-ARS for financial support. CC, GJdlV and LC have a PhD fellowship and PES and LAC are researchers from Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. We also would like to thank two anonymous reviewers and the Editor for helpful suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CC, LAC and PES conceived the ideas and designed methodology. CC, LC and LAC collected the colonies. CC collected laboratory data. CC and GJdlV collected field data. GJdlV performed SDM. CC and GJdlV analysed the data. LAC and PES contributed reagents/materials. CC and PES led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding authors

Correspondence to Luis A. Calcaterra or Pablo E. Schilman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulin, C., de la Vega, G.J., Chifflet, L. et al. Linking thermo-tolerances of the highly invasive ant, Wasmannia auropunctata, to its current and potential distribution. Biol Invasions 21, 3491–3504 (2019). https://doi.org/10.1007/s10530-019-02063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-019-02063-0

Keywords

Navigation