Skip to main content

Advertisement

Log in

Can invasive habitat-forming species play the same role as native ones? The case of the exotic marine macroalga Rugulopteryx okamurae in the Strait of Gibraltar

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The addition or loss of habitat-forming species may lead to significant changes in the structure and functioning of marine benthic ecosystems as a whole. However, the nature of the impact of invasive macroalgae on native mobile invertebrate assemblage is still hard to predict. In this sense, the degree of morphological resemblance (mainly structural complexity) between native and exotic habitat-forming species has been proposed as a suitable predictor of epifauna response to biological invasions. The recently introduced macroalga Rugulopteryx okamurae is becoming a dominant element in coastal rocky bottoms in the Strait of Gibraltar, where it is sympatric with the native species Dictyota dichotoma. Despite the high morphological similarity between both habitat-forming species, native and exotic macroalgae hosted different macrofaunal assemblages. Dictyota dichotoma showed lower number of species, abundance of individuals, and diversity values than the introduced macroalga. Most shared species showed higher abundance on R. okamurae, but there was high variability in the response to macroalgal identity across higher taxa. Thus, there were no major differences in polychaete assemblage between macroalgal species or among sites, when considering univariate measures (abundance of individuals, number of species and H′ values) or species composition (with the exception of abundance values), while peracarid crustaceans and molluscs showed the opposite pattern. Therefore, our results suggest that morphological similarities among habitat-forming species do not always allow predicting of whether the invasive taxa are functionally equivalent to native ones. They also highlight the relevance of fine taxonomical resolution for revealing complex impacts of invasive macroalgae. In addition, R. okamurae’s capacity to determine significant changes on native fauna has been pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agatsuma Y, Kuwahara Y, Taniguchi K (2005) Life cycle of Dilophus okamurae (Phaeophyceae) and its associated invertebrate fauna in Onagawa Bay, Japan. Fish Sci 71:1107–1114

    Article  CAS  Google Scholar 

  • Altamirano M, De La Rosa J, Martínez FJ (2016) Arribazones de la especie exótica Rugulopteryx okamurae (E.Y. Dawson) I.K. Hwang, W.J. Lee and H.S. Kim (Dictyotales, Orchrophyta) en el Estrecho de Gibraltar: primera cita para el Atlántico y España. Algas 52:20

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

  • Bates CR, DeWreede RE (2007) Do changes in seaweed biodiversity influence associated invertebrate epifauna? J Exp Mar Biol Ecol 344:206–214

    Article  Google Scholar 

  • Bedini R, Bedini M, Bonechi L, Piazzi L (2014) Effects of non-native turf-forming Rhodophyta on mobile macro-invertebrate assemblages in the north-western Mediterranean Sea. Mar Bio Res 11:430–437

    Article  Google Scholar 

  • Bianchi CN, Boudouresque CF, Francour P, Morri C, Parravicini V, Templado J, Zenetos A (2013) The changing biogeography of the Mediterranean Sea: from the old frontiers to the new gradients. Boll Mus Ist Biol Univ Genova 75:81–84

    Google Scholar 

  • Bruno JF, Boyer KE, Duffy JE, Lee SC, Kertesz JS (2005) Effects of macroalgal species identity and richness on primary production in benthic marine communities. Ecol Lett 8:1165–1174

    Article  Google Scholar 

  • Carvalho NF, Grande H, Rosa Filho JS, Jacobucci GB (2018) The structure of gammarid amphipod (Crustacea, Peracarida) assemblages associated with Sargassum (Phaeophyta, Fucales) and their link with the structural complexity of algae. Hydrobiologia 820:245–254

    Article  Google Scholar 

  • Chamorro S, Nieto M (1989) Síntesis geológica de Ceuta. Iltre. Ayuntamiento de Ceuta. Concejalía de Cultura, Ceuta

  • Clarke KR, Gorley RN (2001) PRIMER (Plymouth Routines In Multivariate Ecological Research) v5: user manual/tutorial. PRIMER-E Ltd., Plymouth

    Google Scholar 

  • Crooks JE (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166

    Article  Google Scholar 

  • Cunha AF, Maruyama PK, Jacobucci GB (2018) Epiphytic hydroids (Cnidaria, Hydrozoa) contribute to a higher abundance of caprellid amphipods (Crustacea, Peracarida) on macroalgae. Hydrobiologia 808:251–264

    Article  CAS  Google Scholar 

  • Diamond J, Case TJ (1986) Overview: introductions, extinctions, exterminations, and invasions. In: Diamond J, Case TJ (eds) Community ecology. Harper and Row, New York, pp 65–79

    Google Scholar 

  • Donnarumma L, Sandulli R, Appolloni L, Sánchez-Lizaso JL, Russo GF (2018) Assessment of structural and functional diversity of mollusc assemblages within vermetid bioconstructions. Diversity 10:96

    Article  Google Scholar 

  • Drake JM, Lodge DM (2004) Global hot spots of biological invasions: evaluating options for ballast-water management. Proc R Soc Ser B Biol 271:575–580

    Article  Google Scholar 

  • El Aamri F, Idhalla M, Tamsouri MN (2018) Ocurrence of the invasive brown seaweed Rugulopteryx okamurae (EY Dawson) IK Wang, WJ Lee and HS Kim (Dictyotales, Phaeophyta) in Morocco (Mediterranean Sea). MedFAR 1:92–96

    Google Scholar 

  • García-Gómez JC, Sempere-Valverde J, Ostalé-Valriberas E, Martínez M, Olaya L, González AR, Espinosa F, Sánchez-Moyano E, Megina C, Parada JA (2018) Rugulopteryx okamurae (E.Y. Dawson) I.K. Hwang, W.J. Lee and H.S. Kim (Dictyotales, Ochrophyta), alga exótica “explosiva”. Almoraima 48:103–121

    Google Scholar 

  • Gestoso I, Olabarria C, Troncoso JS (2010) Variability of epifaunal assemblages associated with native and invasive macroalgae. Mar Freshw Res 61:724–731

    Article  CAS  Google Scholar 

  • Gollan JR, Wright JT (2006) Limited grazing pressure by native herbivores on the invasive seaweed Caulerpa taxifolia in a temperate Australian estuary. Mar Freshw Res 57:685–694

    Article  Google Scholar 

  • Graham MH, Fox MD, Hamilton SL (2017) Macrophyte productivity and the provisioning of energy and habitat to nearshore systems. In: Ólafsson E (ed) Marine macrophytes as foundation species. CRC Press, Boca Raton, pp 133–160

    Google Scholar 

  • Gribben PE, Byers JE, Writghr JT, Glasby TM (2013) Positive versus negative effects of an invasive ecosystem engineer on different components of a marine ecosystem. Oikos 122:816–824

    Article  Google Scholar 

  • Guerra-García JM, Cabezas P, Baeza-Rojano E, Espinosa F, García-Gómez JC (2009) Is the north side of the Strait of Gibraltar more diverse than the south side? A case study using the intertidal peracarids (Crustacea: Malacostraca) associated to the seaweed Corallina elongata. J Mar Biol Assoc UK 89:387–397

    Article  Google Scholar 

  • Guerra-García JM, Gordillo I, Ruiz-Tabares A (2012a) Macroalgas del intermareal y del submareal somero de la Península Ibérica (CD Interactivo). Secretariado de Recursos Audiovisuales y Nuevas Tecnologías, Universidad de Sevilla, Sevilla

  • Guerra-García JM, Ros M, Izquierdo D, Soler M (2012b) The invasive Asparagopsis armata versus the native Corallina elongata: differences in associated peracarid assemblages. J Exp Mar Biol Ecol 416–417:121–128

    Article  Google Scholar 

  • Guerra-García JM, Tierno de Figueroa JM, Navarro-Barranco C, Ros M, Sánchez-Moyano JE, Moreira J (2014) Dietary analysis of the marine Amphipoda (Crustacea: Peracarida) from the Iberian Peninsula. J Sea Res 85:508–517

    Article  Google Scholar 

  • Hay ME, Duffy JE, Pfister CA, Fenical W (1987) Chemical defense against different marine herbivores: Are amphipods insect equivalents? Ecology 68:1567–1580

    Article  CAS  Google Scholar 

  • Hay ME, Duffy JE, Fenical W (1990) Host-plant specialization decreases predation on a marine amphipod: an herbivore in plant’s clothing. Ecology 71:733–743

    Article  Google Scholar 

  • Hwang IK, Lee WJ, Kim HS, De Clerck O (2009) Taxonomical reappraisal of Dilophus okamurae (Dictyotales, Phaephyta) from the western Pacific Ocean. Phycologia 48:1–12

    Article  Google Scholar 

  • Jiménez-Prada P, Hachero-Cruzado I, Guerra-García JM (2015) The importance of amphipods in diets of marine species with aquaculture interest of Andalusian coast. Zool Baetica 26:3–39

    Google Scholar 

  • Jumars PA, Dorgan KM, Lindsay SM (2015) Diet of worms emended: an update of polychaete feeding guilds. Annu Rev Mar Sci 7:497–520

    Article  Google Scholar 

  • Kochmann J, Buschbaum C, Volkenborn N, Reise K (2008) Shift from native mussels to alien oysters: differential effects of ecosystem engineers. J Exp Mar Biol Ecol 264:1–10

    Article  Google Scholar 

  • Kovalenko KE, Thomaz SM, Warfe DM (2012) Habitat complexity: approaches and future directions. Hydrobiologia 685:1–17

    Article  Google Scholar 

  • Kurata K, Suzuki M, Shiraishi K, Taniguchi K (1988) Spatane-type diterpenes with biological activity from the brown alga Dilophus okamurai. Phytochemistry 27:1321–1324

    Article  CAS  Google Scholar 

  • Lanham BS, Gribben PE, Poore AGB (2015) Beyond the border: effects of an expanding algal habitat on the fauna of neighbouring habitats. Mar Environ Res 106:10–18

    Article  CAS  Google Scholar 

  • Losi V, Sbrocca C, Gatti G, Semprucci F, Rocchi M, Bianchi CN, Balsamo M (2018) Sessile macrobenthos (Ochrophyta) drives seasonal change of meiofaunal community structure on temperate rocky reefs. Mar Environ Res 142:295–305

    Article  CAS  Google Scholar 

  • Macias D, Echevarría F, Bruno M, García CM (2010) The Strait of Gibraltar: tides, topography and associated biological effects. In: Wright LL (ed) Sea level rise, coastal engineering, shorelines and tides. Nova Publisher, New York

    Google Scholar 

  • Maggi E, Benedetti-Cecchi L, Castelli A, Chatzinikolaou E, Crowe TP, Ghedini G, Kotta K, Lyons DA, Ravaglioli C, Rilov G, Rindi L, Bulleri F (2015) Ecological impacts of invading seaweeds: a meta-analysis of their effects at different trophic levels. Divers Distrib 21:1–12

    Article  Google Scholar 

  • Máximo P, Ferreira LM, Branco P, Lima P, Lourenço A (2018) Secondary metabolites and biological activity of invasive macralgae of Southern Europe. Mar Drugs 16:265

    Article  Google Scholar 

  • McAbendroth L, Ramsay PM, Foggo A, Rundle SD, Bilton DT (2005) Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111:279–290

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  Google Scholar 

  • Monteiro CA, Engelen AH, Santos ROP (2009) Macro- and mesoherbivores prefer native seaweeds over the invasive brown seaweed Sargassum muticum: a potential regulating role on invasions. Mar Biol 156:2505–2515

    Article  Google Scholar 

  • Naranjo C, García-Lafuente J, Sannino G, Sanchez-Garrido JC (2014) How much do tides affect the circulation of the Mediterranean Sea? From local processes in the Strait of Gibraltar to basin-scale effects. Prog Oceanogr 127:108–116

    Article  Google Scholar 

  • Navarro-Barranco C, Florido M, Ros M, González-Romero P, Guerra-García JM (2018) Impoverished mobile epifaunal assemblages associated with the invasive macroalga Asparagopsis taxiformis in the Mediterranean Sea. Mar Environ Res 1:1. https://doi.org/10.1016/j.marenvres.2018.07.016

    Article  CAS  Google Scholar 

  • Patarnello T, Volckaert FAMJ, Castilho R (2007) Pillars of hercules: Is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16:4426–4444

    Article  Google Scholar 

  • Piniella F, Walliser J (2013) Maritime safety in the Strait of Gibraltar: taxonomy and evolution of emergencies rate in 2000–2004 period. J Maritime Res 10:25–30

    Google Scholar 

  • Rasband WS (1997) ImageJ. U.S. National Institute of Health, Bethesda (MD). http://rsb.info.nih.gov/ij/. Accessed 20 June 2018

  • Ricciardi A, Atkinson SK (2004) Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol Lett 7:781–784

    Article  Google Scholar 

  • Ricciardi A, Hoopes MF, Marchetti M, Lockwood JL (2013) Progress toward understanding the ecological impacts of non-native species. Ecol Monogr 83:263–282

    Article  Google Scholar 

  • Roberts DA, Poore AGB (2006) Habitat configuration affects colonisation of epifauna in a marine algal bed. Biol Conserv 127:18–26

    Article  Google Scholar 

  • Rubal M, Costa-García R, Besteiro C, Sousa-Pinto I, Veiga P (2018) Mollusc diversity associated with the non-indigenous macroalga Asparagopsis armata Harvey, 1855 along the Atlantic coast of the Iberian Peninsula. Mar Environ Res 136:1–7

    Article  CAS  Google Scholar 

  • Saarinen A, Salovius-Laurén S, Mattila J (2018) Epifaunal community composition in five macroalgal species—What are the consequences if some algal species are lost? Est Coast Shelf Sci 207:402–413

    Article  Google Scholar 

  • Schaffelke B, Smith JE, Hewitt CL (2006) Introduced macroalgae—a growing concern. J Appl Phycol 18:529–541

    Article  Google Scholar 

  • Schmidt A, Scheibling RE (2006) A comparison of epifauna and epiphytes on native kelps (Laminaria species) and an invasive alga (Codium fragile ssp. tomentosoides) in Nova Scotia, Canada. Bot Mar 49:315–330

    Article  Google Scholar 

  • Suárez-Jiménez R, Hepburn CD, Hyndes GA, McLeod RJ, Taylor RB, Hurd CL (2017) The invasive kelp Undaria pinnatifida hosts an epifaunal assemblage similar to native seaweeds with comparable morphologies. Mar Ecol Prog Ser 582:45–55

    Article  Google Scholar 

  • Tanner JE (2006) Landscape ecology of interactions between seagrass and mobile epifauna: the matrix matters. Estuar Coast Shelf Sci 68:404–412

    Article  Google Scholar 

  • Taylor B (1998) Density, biomass and productivity of animals in four subtidal rocky reef habitats: the importance of small mobile invertebrates. Mar Ecol Prog Ser 172:37–51

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, Olden JD, Griffin JN, Silliman BR (2011) A framework to study the context-dependent impacts of marine invasions. Divers Distrib 400:322–327

    Google Scholar 

  • Thomsen MS, Staehr PA, Nejrup L, Schiel DR (2013) Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-ocurring foundation species and associated invertebrates. Aquat Invasions 8:133–145

    Article  Google Scholar 

  • Thomsen MS, Byers JE, Schiel DR, Bruno JF, Olden JD, Wernberg T, Silliman BR (2014) Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar Ecol Prog Ser 495:39–47

    Article  Google Scholar 

  • Thomsen MS, Hildebrand T, South PM, Foster T, Siciliano A, Oldach E, Schiel DR (2016) A sixth-level habitat cascade increases biodiversity in an intertidal estuary. Ecol Evol 6:8291–8303

    Article  Google Scholar 

  • Thornber CS, Jones E, Thomsen MS (2017) Epibiont-marine macrophytes assemblages. In: Ólafsson E (ed) Marine macrophytes as foundation species. CRC Press, Boca Raton, pp 43–75

    Google Scholar 

  • Tronholm A, Steen F, Tyberghein L, Leliaert F, Verbruggen H, Siguan MA, De Clerck O (2010) Species delimitation, taxonomy, and biogeography of Dictyota in Europe (Dictyotales, Phaeophyceae). J Phycol 46:1301–1321

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Underwood AJ, Chapman MG, Richards SA (2002) GMAV-5 for Windows: an analysis of variance programme. University of Sydney, Sydney

    Google Scholar 

  • Vázquez-Luis M, Guerra-García JM, Sánchez-Jerez P, Bayle-Sempere JT (2009) Caprellid assemblages (Crustacea: Amphipoda) in shallow waters invaded by Caulerpa racemosa var. cylindracea from southeastern Spain. Helgoland Mar Res 63:107–117

    Article  Google Scholar 

  • Veiga P, Rubal M, Sousa-Pinto I (2014) Structural complexity of macroalgae influences epifaunal assemblages associated with native and invasive species. Mar Environ Res 101:115–123

    Article  CAS  Google Scholar 

  • Veiga P, Torres AC, Besteiro C, Rubal M (2018) Mollusc assemblages associated with invasive and native Sargassum species. Cont Shelf Res 161:12–19

    Article  Google Scholar 

  • Verlaque M, Steen F, De Clerck O (2009) Rugulopteryx (Dictyotales, Phaoephyceae), a genus recently introduced to the Mediterranean. Phycologia 48:536–542

    Article  Google Scholar 

  • Viejo RM (1999) Mobile epifauna inhabiting the invasive Sargassum muticum and two local seaweeds in northern Spain. Aquat Bot 64:131–149

    Article  Google Scholar 

  • Wahl M, Molis M, Hobday AJ, Dudgeon S, Neumann R, Steinberg P, Campbell AH, Marzinelli E, Connell S (2015) The responses of brown macroalgae to environmental change from local to global scales: direct versus ecologically mediated effects. Perspect Phycol 2:11–29

    Article  Google Scholar 

  • Williams SL, Smith JE (2007) A global review of the distribution, taxonomy and impacts of introduced seaweeds. Annu Rev Ecol Evol S 25:443–466

    Google Scholar 

  • Zwerschke N, Bollen M, Molis M, Scrosati RA (2013) An environmental stress model correctly predicts unimodal trends in overall species richness and diversity along intertidal elevation gradients. Helgoland Mar Res 67:663–674

    Article  Google Scholar 

  • Zwerschke N, Hollyman PR, Wild R, Strigner R, Turner JR, King JW (2018) Limited impact of an invasive oyster on intertidal assemblage structure and biodiversity: the importance of environmental context and functional equivalency with native species. Mar Biol 165:89. https://doi.org/10.1007/s00227-018-3338-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. José Carlos García Gómez, director of the Laboratorio de Biología Marina of the University of Sevilla, and José Manuel Ávila Rivera (Gran Azul Watergames) for providing all the facilities at “Estación de Biología Marina del Estrecho” during field sampling. Thanks also to three anonymous reviewers for their valuable suggestions, and Clara Gavira O’Neill, who conducted the English revision of the manuscript. This study was funded by the “Instituto de Estudios Ceutíes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Navarro-Barranco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro-Barranco, C., Muñoz-Gómez, B., Saiz, D. et al. Can invasive habitat-forming species play the same role as native ones? The case of the exotic marine macroalga Rugulopteryx okamurae in the Strait of Gibraltar. Biol Invasions 21, 3319–3334 (2019). https://doi.org/10.1007/s10530-019-02049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-019-02049-y

Keywords

Navigation