The role of landscape composition and disturbance type in mediating salt marsh resilience to feral hog invasion

Abstract

Habitat patch composition and configuration mediate the fitness and distribution of many species. However, we know little about how this landscape complementation may influence the distribution of an invasive species’ ecological impacts and, in turn, how this affects ecosystem resilience to disturbance. We surveyed > 820 km of coastline to evaluate how landscape complementation mediates patterns in invasive feral hog (Sus scrofa) rooting, trampling and wallowing disturbances in southeastern US salt marshes and assessed marsh resilience to these behaviors in an 8-site survey and 13-month field experiment. We discovered that hog rooting and trampling most often occur where hardwood forest comprises > 30% and salt marsh < 22% of habitat surrounding each surveyed site, respectively, while wallowing correlated most strongly with salt marsh invertebrate densities. At the 8 survey sites, vegetation cover, soil organic carbon, and surface elevation were consistently lower, and soil anoxia and porewater ammonium-nitrogen higher, in hog-disturbed relative to undisturbed areas. The experiment revealed that vegetation can recover when rooted or trampled, but remains depressed when wallowed or repeatedly disturbed. Together, these findings provide novel evidence that habitat patch composition at landscape scales can act together with local habitat attributes to dictate invasive species’ disturbance patterns and highlight areas most vulnerable to invaders. In salt marshes, insights gleaned from such consideration of landscape complementation can inform conservation and management strategies for curbing the impact of this prolific, global invader.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Angelini C, van Montfrans SG, Hensel MJS et al (2018) The importance of an underestimated grazer under climate change: how crab density, consumer competition, and physical stress affect salt marsh resilience. Oecologia 187:205–217. https://doi.org/10.1007/s00442-018-4112-8

    Article  PubMed  Google Scholar 

  2. Atwood EL (2007) Life history studies of nutria, or coypu, in coastal Louisiana. J Wildl Manage 14:249. https://doi.org/10.2307/3796144

    Article  Google Scholar 

  3. Barbier EB, Hacker SD, Kennedy C et al (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193. https://doi.org/10.1890/10-1510.1

    Article  Google Scholar 

  4. Barrios-Garcia MN, Ballari SA (2012) Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol Invasions 14:2283–2300. https://doi.org/10.1007/s10530-012-0229-6

    Article  Google Scholar 

  5. Bates D, Martin M, Bolker B, Walker S (2015) Fitting linear-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  6. Bertness M (1985) Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology 66:1042–1055

    Article  Google Scholar 

  7. Bertness MD, Miller T (1984) The distribution and dynamics of Uca pugnax (Smith) burrows in a New England salt marsh. J Exp Mar Bio Ecol 83:211–237. https://doi.org/10.1016/S0022-0981(84)80002-7

    Article  Google Scholar 

  8. Bracke MBM (2011) Review of wallowing in pigs: description of the behaviour and its motivational basis. Appl Anim Behav Sci 132:1–13. https://doi.org/10.1016/j.applanim.2011.01.002

    Article  Google Scholar 

  9. Campbell Grant EH, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett 10:165–175. https://doi.org/10.1111/j.1461-0248.2006.01007.x

    Article  PubMed  Google Scholar 

  10. Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cycles 1:1. https://doi.org/10.1029/2002gb001917

    Article  Google Scholar 

  11. Choquenot D, Ruscoe WA (2003) Landscape complementation and food limitation of large herbivores: habitat-related constraints on the foraging efficiency of wild pigs. J Anim Ecol 72:14–26. https://doi.org/10.1046/j.1365-2656.2003.00676.x

    Article  Google Scholar 

  12. Costello DM, Tiegs SD, Lamberti GA (2011) Do non-native earthworms in Southeast Alaska use streams as invasional corridors in watersheds harvested for timber? Biol Invasions 13:177–187. https://doi.org/10.1007/s10530-010-9800-1

    Article  Google Scholar 

  13. Craft CB, Seneca ED, Broome SW (1991) Loss on ignition and kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: calibration with dry combustion. Estuaries 14:175–179. https://doi.org/10.1007/BF02689350

    Article  CAS  Google Scholar 

  14. Day JW, Kemp GP, Reed DJ et al (2011) Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: the role of sedimentation, autocompaction and sea-level rise. Ecol Eng 37:229–240. https://doi.org/10.1016/j.ecoleng.2010.11.021

    Article  Google Scholar 

  15. Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169. https://doi.org/10.2307/3544901

    Article  Google Scholar 

  16. Fagan WF (2002) Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83:3243–3249. https://doi.org/10.1890/0012-9658(2002)083%5b3243:CFAERI%5d2.0.CO;2

    Article  Google Scholar 

  17. Ford MA, Grace JB (1998) Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation and soil elevation changes in a coastal marsh. J Ecol 86:974–982. https://doi.org/10.1046/j.1365-2745.1998.00314.x

    Article  Google Scholar 

  18. González-Bernal E, Greenlees M, Brown GP, Shine R (2012) Cane toads on cowpats: commercial livestock production facilitates toad invasion in tropical Australia. PLoS ONE 7:e49351. https://doi.org/10.1371/journal.pone.0049351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graves HB (2016) Behavior and Ecology of Wild and Feral Swine (Sus Scrofa). J Anim Sci 58:482–492. https://doi.org/10.2527/jas1984.582482x

    Article  Google Scholar 

  20. Gurevitch J, Fox GA, Wardle GM et al (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14:407–418. https://doi.org/10.1111/j.1461-0248.2011.01594.x

    Article  CAS  PubMed  Google Scholar 

  21. Hobbs RJ (2001) Synergisms among habitat fragmentation, livestock grazing, and biotic invasions in Southwestern Australia. Conserv Biol 15:1522–1528. https://doi.org/10.1046/j.1523-1739.2001.01092.x

    Article  Google Scholar 

  22. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23. https://doi.org/10.1146/annurev.es.04.110173.000245

    Article  Google Scholar 

  23. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  24. Kaller MD, Kelso WE (2006) Swine activity alters invertebrate and microbial communities in a coastal plain watershed. Am Midl Nat 156:163–177. https://doi.org/10.1674/0003-0031(2006)156%5b163:saaiam%5d2.0.co;2

    Article  Google Scholar 

  25. Keuling O, Stier N, Roth M (2008) Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur J Wildl Res 54:403–412. https://doi.org/10.1007/s10344-007-0157-4

    Article  Google Scholar 

  26. Milbau A, Stout JC, Graae BJ, Nijs I (2009) A hierarchical framework for integrating invasibility experiments incorporating different factors and spatial scales. Biol Invasions 11:941–950. https://doi.org/10.1007/s10530-008-9306-2

    Article  Google Scholar 

  27. Persico E, Sharp S, Angelini C (2017) Feral hog disturbance alters carbon dynamics in southeastern US salt marshes. Mar Ecol Prog Ser 580:57–68. https://doi.org/10.3354/meps12282

    Article  CAS  Google Scholar 

  28. Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316. https://doi.org/10.1146/annurev.ecolsys.28.1.289

    Article  Google Scholar 

  29. Pope SE, Fahrig L, Merriam HG (2009) Landscape complementation and metapopulation effects on leopard frog populations. Ecology 81:2498–2508. https://doi.org/10.1890/0012-9658(2000)081%5b2498:LCAMEO%5d2.0.CO;2

    Article  Google Scholar 

  30. Porter KM, DePerno CS, Krings A et al (2014) Vegetative impact of feral horses, feral pigs, and white-tailed deer on the Currituck National Wildlife Refuge, North Carolina. Castanea 79:8–17. https://doi.org/10.2179/13-037

    Article  Google Scholar 

  31. R Core Team (2014) R: A language and environment for statistical computing

  32. Rodríguez-Estévez V, Sánchez-Rodríguez M, Gómez-Castro AG, Edwards SA (2010) Group sizes and resting locations of free range pigs when grazing in a natural environment. Appl Anim Behav Sci 127:28–36. https://doi.org/10.1016/J.APPLANIM.2010.08.010

    Article  Google Scholar 

  33. Roe JH, Georges A (2007) Heterogeneous wetland complexes, buffer zones, and travel corridors: landscape management for freshwater reptiles. Biol Conserv 135:67–76. https://doi.org/10.1016/j.biocon.2006.09.019

    Article  Google Scholar 

  34. Schrama M, Heijning P, Bakker JP et al (2013) Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia 172:231–243. https://doi.org/10.1007/s00442-012-2484-8

    Article  Google Scholar 

  35. Sharp SJ, Angelini C (2016) Whether disturbances alter salt marsh soil structure dramatically affects Spartina alterniflora recolonization rate. Ecosphere 7:e01540. https://doi.org/10.1002/ecs2.1540

    Article  Google Scholar 

  36. Silliman BR, Zieman JC (2001) Top-down control of Spartina alterniflora production by periwinkle grazing in a Virginia salt marsh. Ecology 82:2830–2845. https://doi.org/10.1890/0012-9658(2001)082%5b2830:TDCOSA%5d2.0.CO;2

    Article  Google Scholar 

  37. Silliman BR, van de Koppel J, Bertness MD et al (2005) Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310:1803–1806. https://doi.org/10.1126/science.1118229

    Article  CAS  PubMed  Google Scholar 

  38. Singer FJ, Swank WT, Clebsch EEC (1984) Effects of wild pig rooting in a deciduous forest. J Wildl Manage 48:464–473. https://doi.org/10.2307/3801179

    Article  CAS  Google Scholar 

  39. Soh MC, Sodhi NS, Seoh RK, Brook BW (2002) Nest site selection of the house crow (Corvus splendens), an urban invasive bird species in Singapore and implications for its management. Landsc Urban Plan 59:217–226. https://doi.org/10.1016/S0169-2046(02)00047-6

    Article  Google Scholar 

  40. Therneau T, Atkinson B (2017) rpart: Recursive partioning and regression trees. R package version 4.1-13. http://CRAN.R-project.org/package=rpart

  41. Wiegand T, Moloney KA, Naves J, Knauer F (1999) Finding the missing link between landscape structure and population dynamics: a spatially explicit perspective. Am Nat 154:605–627. https://doi.org/10.1086/303272

    Article  PubMed  Google Scholar 

  42. Wood GW, Brenneman RE (1980) Feral hog movements and habitat use in coastal South Carolina. J. Wildl. Manage 44:420–427

    Article  Google Scholar 

  43. Zervanos SM, McCort WD, Graves HB (1983) Salt and water balance of feral versus domestic Hampshire hogs. Physiol Zool 56:67–77. https://doi.org/10.1086/physzool.56.1.30159967

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Persico, E. Johnson, A. Bersoza, S. Crotty, K. Prince, and T. Sanville for many hours of field work. We also thank the Georgia Department of Natural Resources, University of Georgia Marine Institute, Georgia Coastal Ecosystems Long-Term Ecological Research site, and the Guana Tolomato Matanzas National Estuarine Research Reserve for logistical support. This work was supported through awards from Society of Wetland Scientists, Timucuan Trail Parks Foundation, HT Odum Fellowship and the NSF EAGER 1546638 award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sean J. Sharp.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharp, S.J., Angelini, C. The role of landscape composition and disturbance type in mediating salt marsh resilience to feral hog invasion. Biol Invasions 21, 2857–2869 (2019). https://doi.org/10.1007/s10530-019-02018-5

Download citation

Keywords

  • Carbon sequestration
  • Invasive species
  • Landscape complementation
  • Spartina alterniflora
  • Sus scrofa