Positive interactions among native and invasive vascular plants in Antarctica: assessing the “nurse effect” at different spatial scales

Abstract

Antarctica is a stressful ecosystem with few vascular plants, an ideal system to test positive interactions. Here, plants such as Deschampsia antarctica could generate more suitable micro-environmental conditions for the establishment of other plants (facilitation). We examined the co-occurrence of vascular plant species in the Antarctic Peninsula and assessed the potential nurse effect by D. antarctica on the native Colobanthus quitensis and the invasive Poa annua. We also measured the ecophysiological performance and survival of C. quitensis within and outside the canopy of D. antarctica in two study sites differing in stress levels. In addition, a survival experiment was conducted with the invasive Poa annua individuals within and outside D. antarctica individuals. In sites where present, target species co-occurred with D. antarctica in both Shetland Islands and Antarctic Peninsula. In agreement with the stress gradient hypothesis, we found evidence of facilitation between vascular Antarctic plant species. Specifically, we found that D. antarctica facilitates the native C. quitensis and the invasive P. annua and that the effect is stronger in more stressful sites. Additionally, C. quitensis distribution is compatible with an influence of either direct or indirect facilitation from D. antarctica. Facilitation between vascular plants may play a role structuring Antarctic plant communities. Thus, distribution of native species should be considered when assessing the introduction and spread of invasive species. Also, our results together with those from previous studies showed that the type and magnitude of biotic interactions may change with time and can depend on the plant traits considered.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486

    Article  CAS  PubMed  Google Scholar 

  2. Armas C, Ordiales R, Pugnaire FI (2004) Measuring plant interactions: a new comparative index. Ecology 85:2682–2686

    Article  Google Scholar 

  3. Bertness M, Callaway RM (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  4. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G et al (2008) Facilitation in plant communities: the past, the present and the future. J Ecol 96:18–34

    Article  Google Scholar 

  5. Callaway RM (1997) Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112:143–149

    Article  PubMed  Google Scholar 

  6. Callaway RM (2013) Life at the edge, cooperation in Antarctica. J Veg Sci 24:417–418

    Article  Google Scholar 

  7. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interaction in plant communities. Ecology 78:1958–1965

    Article  Google Scholar 

  8. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R et al (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  CAS  PubMed  Google Scholar 

  9. Cannone N, Guglielmin M, Convey P, Worland MR, Longo CEF (2016) Vascular plants changes in extreme environments: effects of multiple drivers. Clim Change 34:651–665

    Article  Google Scholar 

  10. Casanova-Katny MA, Cavieres LA (2012) Antarctic moss carpets facilitate growth of Deschampsia antarctica but not its survival. Polar Biol 35:1869–1878

    Article  Google Scholar 

  11. Casanova-Katny MA, Torres-Mellado GA, Palfner G, Cavieres LA (2011) The best for the guest: high Andean nurse cushions of Azorella madreporica enhance arbuscular Mycorrhizal status in associated plant species. Mycorrhiza 21:613–622

    Article  PubMed  Google Scholar 

  12. Cavieres LA, Badano EI (2009) Do facilitative interactions increase species richness at the entire community level? J Ecol 97:1181–1191

    Article  Google Scholar 

  13. Cavieres LA, Quiroz C, Molina-Montenegro MA, Muñoz AA, Pauchard A (2005) Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspect Plant Ecol Evol Syst 7:217–226

    Article  Google Scholar 

  14. Cavieres LA, Badano EI, Sierra-Almeida A, Gómez-González S, Molina-Montenegro MA (2006) Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytol 169:59–69

    Article  PubMed  Google Scholar 

  15. Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arct Antarc Alp Res 39:229–236

    Article  Google Scholar 

  16. Cavieres LA, Quiroz C, Molina-Montenegro MA (2008) Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central Chile: are there differences between nurses? Funct Ecol 22:148–156

    Article  Google Scholar 

  17. Cavieres LA, Brooker RW, Butterfield BJ, Cook BJ, Kikvidze Z, Lortie CJ et al (2014) Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol Lett 17:193–202

    Article  PubMed  Google Scholar 

  18. Cavieres LA, Sanhueza AK, Torres-Mellado G, Casanova-Katny A (2018) Competition between native Antarctic vascular plants and invasive Poa annua changes with temperature and soil nitrogen availability. Biol Invasions 20(6):1597–1610

    Article  Google Scholar 

  19. Chen J, Yang Y, Stöcklin J, Cavieres LA, Peng D, Li Z (2015) Soil nutrient availability determines the facilitative effects of cushion plants on other plant species at high elevations in the south-eastern Himalayas. Plant Ecol Divers 8:199–210

    Article  Google Scholar 

  20. Chwedorzewska KJ, Gielwanowska I, Olech M, Molina-Montenegro MA, Wódkiewicz M, Galera I (2015) Poa annua in the maritime Antarctic: an overview. Polar Rec 51:637–643

    Article  Google Scholar 

  21. Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJ, Smellie JL et al (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117

    Article  PubMed  Google Scholar 

  22. Convey P, Hopkins DW, Roberts SJ, Tyler AN (2011) Global southern limit of flowering plants and moss peat accumulation. Polar Res 30:8929

    Article  Google Scholar 

  23. Divito GA, Sadras VO (2014) How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Res 156:161–171

    Article  Google Scholar 

  24. Edgington E, Onghena P (2007) Randomization tests. Chapman & Hall, New York

    Google Scholar 

  25. Egerova J, Proffitt CE, Travis S (2003) Facilitation of survival and growth of Baccharis halimifolia L. by Spartina alterniflora Loisel in a created Louisiana salt marsh. Wetlands 23:250–256

    Article  Google Scholar 

  26. Flores J, Jurado E (2003) Are nurse-protégé interactions more common among plants from arid environments? J Veg Sci 14:911–916

    Article  Google Scholar 

  27. Fowbert JA, Smith RIL (1994) Rapid population increases in native vascular plants in the Argentine Island, Antarctic Peninsula. Arct Antarc Alp Res 26:290–296

    Article  Google Scholar 

  28. Fox GA (1993) Failure time analysis: emergence, flowering, survivorship, and other waiting times. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, Oxford, pp 253–289

    Google Scholar 

  29. Godoy O, Valladares F, Castro-Díez P (2011) Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Funct Ecol 25:1248–1259

    Article  Google Scholar 

  30. Green TGA, Schroeter B, Sancho LG (2007) Plant life in Antarctica. In: Pugnaire FI, Valladares F (eds) Functional plant ecology. CRC Press, Taylor & Francis Group, Boca Raton, pp 389–399

    Google Scholar 

  31. Groeneveld EVG, Rochefort L (2005) Polytrichum strictum as a solution to frost heaving in disturbed ecosystems: a case study with milled Peatlands. Rest Ecol 13:74–82

    Article  Google Scholar 

  32. Haussmann NS, Boelhouwers JC, McGeoch MA (2009) Fine scale variability in soil frost dynamics surrounding cushions of the dominant vascular plant species (Azorella selago) on sub-Antarctic Marion Island. Geogr Ann Ser A Phys Geogr 91:257–268

    Article  Google Scholar 

  33. Haussmann NS, McGeoch MA, Boelhouwers JC (2010) Contrasting nurse plants and nurse rocks: the spatial distribution of seedlings of two sub-Antarctic species. Acta Oecol 36:299–305

    Article  Google Scholar 

  34. He Q, Bertness MK, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706

    Article  Google Scholar 

  35. Hill PW, Farrar J, Roberts P, Farrell M, Grant H, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011) Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nat Clim Change 1:50–53

    Article  CAS  Google Scholar 

  36. Holmgren M, Scheffer M (2010) Strong facilitation in mild environments: the stress gradient hypothesis revisited. J Ecol 98:1269–1275

    Article  Google Scholar 

  37. Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77:93–102

    Google Scholar 

  38. Intergovernmental Panel on Climate Change, IPCC (2016) The physical science basis. www.ipcc.ch

  39. Kawai T, Tokeshi M (2007) Testing the facilitation–competition paradigm under the stress-gradient hypothesis: decoupling multiple stress factors. Proc R Soc Lond B Biol Sci 274:2503–2508

    Article  Google Scholar 

  40. Kennedy AD (1995) Antarctic terrestrial ecosystem response to global environmental change. Annu Rev Ecol Syst 26:683–704

    Article  Google Scholar 

  41. Krna MA, Day TA, Ruhland CT (2009) Effects of neighbouring plants on the growth and reproduction of Deschampsia antarctica in Antarctic tundra. Polar Biol 32:1487–1494

    Article  Google Scholar 

  42. Le Bagousse-Pinguet Y, Gross EM, Straile D (2012) Release from competition and protection determine the outcome of plant interactions along a grazing gradient. Oikos 121:95–101

    Article  Google Scholar 

  43. Le Roux PC, McGeoch MA (2010) Interaction intensity and importance along two stress gradients: adding shape to the stress-gradient hypothesis. Oecologia 162:733–745

    Article  PubMed  Google Scholar 

  44. Longeri L, Etchevers J, Venegas J (1979) Metodología de perfusión para estudios de nitrificación en suelos. Cien Inv Agr 6:295–299

    Article  CAS  Google Scholar 

  45. Lortie CJ, Turkington R (2008) Species-specific positive effects in an annual plant community. Oikos 117:1511–1521

    Article  Google Scholar 

  46. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  47. Michalet R, Brooker RW, Cavieres LA, Kikvidze Z, Lortie CJ, Pugnaire FI et al (2006) Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecol Lett 9:767–773

    Article  PubMed  Google Scholar 

  48. Michalet R, Le Bagousse-Pinguet Y, Maalouf JP, Lortie CJ (2014) Two alternatives to the stress-gradient hypothesis at the edge of life: the collapse of facilitation and the switch from facilitation to competition. J Veg Sci 25:609–613

    Article  Google Scholar 

  49. Molina-Montenegro MA, Muñoz AA, Badano EI, Morales BW, Fuentes KM et al (2005) Positive associations between macroalgal species in a rocky intertidal zone and their effects on the physiological performance of Ulva lactuca. Mar Ecol Prog Ser 292:173–180

    Article  Google Scholar 

  50. Molina-Montenegro MA, Carrasco-Urra F, Rodrigo C, Convey P, Valladares F, Gianoli E (2012a) Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants. Conserv Biol 26:717–723

    Article  PubMed  Google Scholar 

  51. Molina-Montenegro MA, Torres-Díaz C, Carrasco-Urra F, González-Silvestre L, Gianoli E (2012b) Plasticidad fenotípica en dos poblaciones antárticas de Colobanthus quitensis (Caryophyllaceae) bajo un escenario simulado de cambio global. Gayana Bot 69:152–160

    Article  Google Scholar 

  52. Molina-Montenegro MA, Peñuelas J, Munné-Bosch S, Sardans J (2012c) Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale (dandelion) in alpine environments. Biol Inv 14:21–33

    Article  Google Scholar 

  53. Molina-Montenegro MA, Ricote-Martínez N, Muñoz-Ramírez C, Torres-Díaz C, Gómez-González S, Gianoli E (2013a) Positive interactions between the lichen Usnea antarctica (Parmeliaceae) and the native flora in Maritime Antarctica. J Veg Sci 24:463–472

    Article  Google Scholar 

  54. Molina-Montenegro MA, Salgado-Luarte C, Oses R, Torres-Díaz C (2013b) Is physiological performance a good predictor for fitness? Insights from an invasive plant species. PLoS ONE 8:e76432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Molina-Montenegro MA, Carrasco-Urra F, Acuña-Rodríguez IS, Oses R, Torres-Díaz C, Chwedorzewska KJ (2014) Assessing the importance of human activities for the establishment of the invasive Poa annua in the Antarctica. Polar Res 33:214–225

    Article  Google Scholar 

  56. Molina-Montenegro MA, Oses R, Acuña-Rodríguez IS, Fardella C, Badano EI, Torres-Morales P et al (2016a) Positive interactions by cushion plants in high mountains: fact or artifact? J Plant Ecol 9:117–123

    Article  Google Scholar 

  57. Molina-Montenegro MA, Galleguillos C, Oses R, Acuña-Rodríguez IS, Lavín P, Gallardo-Cerda J et al (2016b) Adaptive phenotypic plasticity and competitive ability deployed under a climate change scenario may promote the invasion of Poa annua in Antarctica. Biol Invas 18:603–618

    Article  Google Scholar 

  58. Nyakatya MJ, McGeoch MA (2008) Temperature variation across Marion Island associated with a keystone plant species (Azorella selago Hook. (Apiaceae)). Polar Biol 31:139–151

    Article  Google Scholar 

  59. Olech M (1996) Human impact on terrestrial ecosystem in west Antarctica. Proc NIPR Symp Polar Biol 9:299–306

    Google Scholar 

  60. Olech M, Chwedorzewska KJ (2008) Population growth of alien species Poa annua L. at the vicinity of H. Arctowski station (South Shetland Is). SCAR/IASC first international polar year 2007–2009, Open science conference “polar research—Arctic and Antarctic perspectives in the international polar year” St. Petersburg, Russia 8–11 czerwca 2008, XXX SCAR meeting

  61. Pertierra LR, Lara F, Benayas F, Hughes KA (2013) Poa pratensis L., current status of the longest-established non-native vascular plant in the Antarctic. Polar Biol 36:1473–1481

    Article  Google Scholar 

  62. Pertierra LR, Aragón P, Shaw JD, Bergstrom DM, Terauds A, Olalla-Tárraga MA (2017a) Global thermal niche models of two European grasses show high invasion risks in Antarctica. Glob Change Biol 23:2863–2873

    Article  Google Scholar 

  63. Pertierra LR, Hughes KA, Tejedo P, Enríquez P, Luciañez MJ, Benayas J (2017b) Eradication of the non-native Poa pratensis colony at Cierva Point, Antarctica: a case study of international cooperation and practical management in an area under multi-party governance. Environ Sci Policy 69:50–56

    Article  Google Scholar 

  64. Robarge WP, Edwards A, Johnson B (1983) Water and waste water analysis for nitrate via nitration of salicylic acid. Commun Soil Sci Plant Anal 14:1207–1215

    Article  CAS  Google Scholar 

  65. Robinson SA, Wasley J, Tobin AK (2003) Living on the edge: plants and global change in continental and maritime Antarctica. Glob Change Biol 9:1681–1717

    Article  Google Scholar 

  66. Rodríguez-Echeverría S, Armas C, Pistón N, Hortal S, Pugnaire FI (2013) A role for below-ground biota in plant–plant facilitation. J Ecol 101:1420–1428

    Article  Google Scholar 

  67. Ruotsalainen AL, Markkola AM, Kozlov MV (2010) Birch effects on root fungal colonization of crowberry are uniform along different environmental gradients. Basic Appl Ecol 11:459–467

    Article  Google Scholar 

  68. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Inv 1:21–32

    Article  Google Scholar 

  69. Smith RIL (1996) Introduced plants in Antarctica: potential impacts and conservation issues. Biol Conserv 76:135–146

    Article  Google Scholar 

  70. Smith RIL, Poncet S (1987) Deschampsia antarctica and Colobanthus quitensis in the Terra Firma Islands. Brit Antarct Surv B 74:31–35

    Google Scholar 

  71. Theodose TA, Bowman WD (1997) The influence of interspecific competition on the distribution of an alpine graminoid: evidence for the importance of plant competition in an extreme environment. Oikos 79:101–114

    Article  CAS  Google Scholar 

  72. Torres-Mellado G, Jaña R, Casanova-Katny MA (2011) Antarctic hairgrass expansion in the South Shetland Archipelago and Antarctic Peninsula revisited. Polar Biol 34:1679–1688

    Article  Google Scholar 

  73. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD et al (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Article  Google Scholar 

  74. Turner J, Lu H, King JC, Phillips T, Hosking JS, Bracegirdle TJ et al (2016) Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535:e18645

    Article  CAS  Google Scholar 

  75. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA et al (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274

    Article  Google Scholar 

  76. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF et al (2013) The role of biotic interactions in shaping distributions and realized assemblages of species: implications for species distribution modelling. Biol Rev Camb Philos Soc 88:15–30

    Article  PubMed  Google Scholar 

  77. Wynn-Williams DD (1990) Ecological aspects of antarctic microbiology. Adv Microb Ecol 11:71–146

    Article  Google Scholar 

  78. Yu F-H, Li P-X, Li S-L, He W-M (2010) Kobresia tibetica tussocks facilitate plant species inside them and increase diversity and reproduction. Basic Appl Ecol 11:743–751

    Article  Google Scholar 

  79. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

We thank INACH, the Chilean Navy and the Arctowski Polish Antarctic Station for their logistical support and measurements of field data. To conduct all manipulative experiments in the field, we have taken into account the international permits and authorizations given by the INACH. This work was funded by CONICYT Project (PII20150126). Luis R. Pertierra was supported by “ALIENANT” Project Granted by the Spanish MINECO I+D programme (CTM2013-47381-P). P. Aragón was supported by the “UNITED” Project (CGL2016-78070-P, MINECO). This article contributes to the SCAR biological research programmes “Antarctic Thresholds - Ecosystem Resilience and Adaptation” (AnT-ERA) and “State of the Antarctic Ecosystem” (AntEco).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco A. Molina-Montenegro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atala, C., Pertierra, L.R., Aragón, P. et al. Positive interactions among native and invasive vascular plants in Antarctica: assessing the “nurse effect” at different spatial scales. Biol Invasions 21, 2819–2836 (2019). https://doi.org/10.1007/s10530-019-02016-7

Download citation

Keywords

  • Antarctica
  • Biotic interactions
  • Colobanthus quitensis
  • Deschampsia antarctica
  • Nurse effect
  • Poa annua
  • Stress gradient hypothesis (SGH)
  • Facilitation