Advertisement

Biological Invasions

, Volume 21, Issue 9, pp 2819–2836 | Cite as

Positive interactions among native and invasive vascular plants in Antarctica: assessing the “nurse effect” at different spatial scales

  • Cristian Atala
  • Luis R. Pertierra
  • Pedro Aragón
  • Fernando Carrasco-Urra
  • Paris Lavín
  • Jorge Gallardo-Cerda
  • Natalia Ricote-Martínez
  • Cristian Torres-Díaz
  • Marco A. Molina-MontenegroEmail author
Original Paper

Abstract

Antarctica is a stressful ecosystem with few vascular plants, an ideal system to test positive interactions. Here, plants such as Deschampsia antarctica could generate more suitable micro-environmental conditions for the establishment of other plants (facilitation). We examined the co-occurrence of vascular plant species in the Antarctic Peninsula and assessed the potential nurse effect by D. antarctica on the native Colobanthus quitensis and the invasive Poa annua. We also measured the ecophysiological performance and survival of C. quitensis within and outside the canopy of D. antarctica in two study sites differing in stress levels. In addition, a survival experiment was conducted with the invasive Poa annua individuals within and outside D. antarctica individuals. In sites where present, target species co-occurred with D. antarctica in both Shetland Islands and Antarctic Peninsula. In agreement with the stress gradient hypothesis, we found evidence of facilitation between vascular Antarctic plant species. Specifically, we found that D. antarctica facilitates the native C. quitensis and the invasive P. annua and that the effect is stronger in more stressful sites. Additionally, C. quitensis distribution is compatible with an influence of either direct or indirect facilitation from D. antarctica. Facilitation between vascular plants may play a role structuring Antarctic plant communities. Thus, distribution of native species should be considered when assessing the introduction and spread of invasive species. Also, our results together with those from previous studies showed that the type and magnitude of biotic interactions may change with time and can depend on the plant traits considered.

Keywords

Antarctica Biotic interactions Colobanthus quitensis Deschampsia antarctica Nurse effect Poa annua Stress gradient hypothesis (SGH) Facilitation 

Notes

Acknowledgements

We thank INACH, the Chilean Navy and the Arctowski Polish Antarctic Station for their logistical support and measurements of field data. To conduct all manipulative experiments in the field, we have taken into account the international permits and authorizations given by the INACH. This work was funded by CONICYT Project (PII20150126). Luis R. Pertierra was supported by “ALIENANT” Project Granted by the Spanish MINECO I+D programme (CTM2013-47381-P). P. Aragón was supported by the “UNITED” Project (CGL2016-78070-P, MINECO). This article contributes to the SCAR biological research programmes “Antarctic Thresholds - Ecosystem Resilience and Adaptation” (AnT-ERA) and “State of the Antarctic Ecosystem” (AntEco).

References

  1. Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486CrossRefPubMedGoogle Scholar
  2. Armas C, Ordiales R, Pugnaire FI (2004) Measuring plant interactions: a new comparative index. Ecology 85:2682–2686CrossRefGoogle Scholar
  3. Bertness M, Callaway RM (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193CrossRefPubMedGoogle Scholar
  4. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G et al (2008) Facilitation in plant communities: the past, the present and the future. J Ecol 96:18–34CrossRefGoogle Scholar
  5. Callaway RM (1997) Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112:143–149CrossRefPubMedGoogle Scholar
  6. Callaway RM (2013) Life at the edge, cooperation in Antarctica. J Veg Sci 24:417–418CrossRefGoogle Scholar
  7. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interaction in plant communities. Ecology 78:1958–1965CrossRefGoogle Scholar
  8. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R et al (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848CrossRefPubMedGoogle Scholar
  9. Cannone N, Guglielmin M, Convey P, Worland MR, Longo CEF (2016) Vascular plants changes in extreme environments: effects of multiple drivers. Clim Change 34:651–665CrossRefGoogle Scholar
  10. Casanova-Katny MA, Cavieres LA (2012) Antarctic moss carpets facilitate growth of Deschampsia antarctica but not its survival. Polar Biol 35:1869–1878CrossRefGoogle Scholar
  11. Casanova-Katny MA, Torres-Mellado GA, Palfner G, Cavieres LA (2011) The best for the guest: high Andean nurse cushions of Azorella madreporica enhance arbuscular Mycorrhizal status in associated plant species. Mycorrhiza 21:613–622CrossRefPubMedGoogle Scholar
  12. Cavieres LA, Badano EI (2009) Do facilitative interactions increase species richness at the entire community level? J Ecol 97:1181–1191CrossRefGoogle Scholar
  13. Cavieres LA, Quiroz C, Molina-Montenegro MA, Muñoz AA, Pauchard A (2005) Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspect Plant Ecol Evol Syst 7:217–226CrossRefGoogle Scholar
  14. Cavieres LA, Badano EI, Sierra-Almeida A, Gómez-González S, Molina-Montenegro MA (2006) Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytol 169:59–69CrossRefPubMedGoogle Scholar
  15. Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arct Antarc Alp Res 39:229–236CrossRefGoogle Scholar
  16. Cavieres LA, Quiroz C, Molina-Montenegro MA (2008) Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central Chile: are there differences between nurses? Funct Ecol 22:148–156CrossRefGoogle Scholar
  17. Cavieres LA, Brooker RW, Butterfield BJ, Cook BJ, Kikvidze Z, Lortie CJ et al (2014) Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol Lett 17:193–202CrossRefPubMedGoogle Scholar
  18. Cavieres LA, Sanhueza AK, Torres-Mellado G, Casanova-Katny A (2018) Competition between native Antarctic vascular plants and invasive Poa annua changes with temperature and soil nitrogen availability. Biol Invasions 20(6):1597–1610CrossRefGoogle Scholar
  19. Chen J, Yang Y, Stöcklin J, Cavieres LA, Peng D, Li Z (2015) Soil nutrient availability determines the facilitative effects of cushion plants on other plant species at high elevations in the south-eastern Himalayas. Plant Ecol Divers 8:199–210CrossRefGoogle Scholar
  20. Chwedorzewska KJ, Gielwanowska I, Olech M, Molina-Montenegro MA, Wódkiewicz M, Galera I (2015) Poa annua in the maritime Antarctic: an overview. Polar Rec 51:637–643CrossRefGoogle Scholar
  21. Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJ, Smellie JL et al (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117CrossRefPubMedGoogle Scholar
  22. Convey P, Hopkins DW, Roberts SJ, Tyler AN (2011) Global southern limit of flowering plants and moss peat accumulation. Polar Res 30:8929CrossRefGoogle Scholar
  23. Divito GA, Sadras VO (2014) How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Res 156:161–171CrossRefGoogle Scholar
  24. Edgington E, Onghena P (2007) Randomization tests. Chapman & Hall, New YorkGoogle Scholar
  25. Egerova J, Proffitt CE, Travis S (2003) Facilitation of survival and growth of Baccharis halimifolia L. by Spartina alterniflora Loisel in a created Louisiana salt marsh. Wetlands 23:250–256CrossRefGoogle Scholar
  26. Flores J, Jurado E (2003) Are nurse-protégé interactions more common among plants from arid environments? J Veg Sci 14:911–916CrossRefGoogle Scholar
  27. Fowbert JA, Smith RIL (1994) Rapid population increases in native vascular plants in the Argentine Island, Antarctic Peninsula. Arct Antarc Alp Res 26:290–296CrossRefGoogle Scholar
  28. Fox GA (1993) Failure time analysis: emergence, flowering, survivorship, and other waiting times. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, Oxford, pp 253–289Google Scholar
  29. Godoy O, Valladares F, Castro-Díez P (2011) Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Funct Ecol 25:1248–1259CrossRefGoogle Scholar
  30. Green TGA, Schroeter B, Sancho LG (2007) Plant life in Antarctica. In: Pugnaire FI, Valladares F (eds) Functional plant ecology. CRC Press, Taylor & Francis Group, Boca Raton, pp 389–399Google Scholar
  31. Groeneveld EVG, Rochefort L (2005) Polytrichum strictum as a solution to frost heaving in disturbed ecosystems: a case study with milled Peatlands. Rest Ecol 13:74–82CrossRefGoogle Scholar
  32. Haussmann NS, Boelhouwers JC, McGeoch MA (2009) Fine scale variability in soil frost dynamics surrounding cushions of the dominant vascular plant species (Azorella selago) on sub-Antarctic Marion Island. Geogr Ann Ser A Phys Geogr 91:257–268CrossRefGoogle Scholar
  33. Haussmann NS, McGeoch MA, Boelhouwers JC (2010) Contrasting nurse plants and nurse rocks: the spatial distribution of seedlings of two sub-Antarctic species. Acta Oecol 36:299–305CrossRefGoogle Scholar
  34. He Q, Bertness MK, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706CrossRefGoogle Scholar
  35. Hill PW, Farrar J, Roberts P, Farrell M, Grant H, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011) Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nat Clim Change 1:50–53CrossRefGoogle Scholar
  36. Holmgren M, Scheffer M (2010) Strong facilitation in mild environments: the stress gradient hypothesis revisited. J Ecol 98:1269–1275CrossRefGoogle Scholar
  37. Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77:93–102Google Scholar
  38. Intergovernmental Panel on Climate Change, IPCC (2016) The physical science basis. www.ipcc.ch
  39. Kawai T, Tokeshi M (2007) Testing the facilitation–competition paradigm under the stress-gradient hypothesis: decoupling multiple stress factors. Proc R Soc Lond B Biol Sci 274:2503–2508CrossRefGoogle Scholar
  40. Kennedy AD (1995) Antarctic terrestrial ecosystem response to global environmental change. Annu Rev Ecol Syst 26:683–704CrossRefGoogle Scholar
  41. Krna MA, Day TA, Ruhland CT (2009) Effects of neighbouring plants on the growth and reproduction of Deschampsia antarctica in Antarctic tundra. Polar Biol 32:1487–1494CrossRefGoogle Scholar
  42. Le Bagousse-Pinguet Y, Gross EM, Straile D (2012) Release from competition and protection determine the outcome of plant interactions along a grazing gradient. Oikos 121:95–101CrossRefGoogle Scholar
  43. Le Roux PC, McGeoch MA (2010) Interaction intensity and importance along two stress gradients: adding shape to the stress-gradient hypothesis. Oecologia 162:733–745CrossRefPubMedGoogle Scholar
  44. Longeri L, Etchevers J, Venegas J (1979) Metodología de perfusión para estudios de nitrificación en suelos. Cien Inv Agr 6:295–299CrossRefGoogle Scholar
  45. Lortie CJ, Turkington R (2008) Species-specific positive effects in an annual plant community. Oikos 117:1511–1521CrossRefGoogle Scholar
  46. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668CrossRefPubMedGoogle Scholar
  47. Michalet R, Brooker RW, Cavieres LA, Kikvidze Z, Lortie CJ, Pugnaire FI et al (2006) Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecol Lett 9:767–773CrossRefPubMedGoogle Scholar
  48. Michalet R, Le Bagousse-Pinguet Y, Maalouf JP, Lortie CJ (2014) Two alternatives to the stress-gradient hypothesis at the edge of life: the collapse of facilitation and the switch from facilitation to competition. J Veg Sci 25:609–613CrossRefGoogle Scholar
  49. Molina-Montenegro MA, Muñoz AA, Badano EI, Morales BW, Fuentes KM et al (2005) Positive associations between macroalgal species in a rocky intertidal zone and their effects on the physiological performance of Ulva lactuca. Mar Ecol Prog Ser 292:173–180CrossRefGoogle Scholar
  50. Molina-Montenegro MA, Carrasco-Urra F, Rodrigo C, Convey P, Valladares F, Gianoli E (2012a) Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants. Conserv Biol 26:717–723CrossRefPubMedGoogle Scholar
  51. Molina-Montenegro MA, Torres-Díaz C, Carrasco-Urra F, González-Silvestre L, Gianoli E (2012b) Plasticidad fenotípica en dos poblaciones antárticas de Colobanthus quitensis (Caryophyllaceae) bajo un escenario simulado de cambio global. Gayana Bot 69:152–160CrossRefGoogle Scholar
  52. Molina-Montenegro MA, Peñuelas J, Munné-Bosch S, Sardans J (2012c) Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale (dandelion) in alpine environments. Biol Inv 14:21–33CrossRefGoogle Scholar
  53. Molina-Montenegro MA, Ricote-Martínez N, Muñoz-Ramírez C, Torres-Díaz C, Gómez-González S, Gianoli E (2013a) Positive interactions between the lichen Usnea antarctica (Parmeliaceae) and the native flora in Maritime Antarctica. J Veg Sci 24:463–472CrossRefGoogle Scholar
  54. Molina-Montenegro MA, Salgado-Luarte C, Oses R, Torres-Díaz C (2013b) Is physiological performance a good predictor for fitness? Insights from an invasive plant species. PLoS ONE 8:e76432CrossRefPubMedPubMedCentralGoogle Scholar
  55. Molina-Montenegro MA, Carrasco-Urra F, Acuña-Rodríguez IS, Oses R, Torres-Díaz C, Chwedorzewska KJ (2014) Assessing the importance of human activities for the establishment of the invasive Poa annua in the Antarctica. Polar Res 33:214–225CrossRefGoogle Scholar
  56. Molina-Montenegro MA, Oses R, Acuña-Rodríguez IS, Fardella C, Badano EI, Torres-Morales P et al (2016a) Positive interactions by cushion plants in high mountains: fact or artifact? J Plant Ecol 9:117–123CrossRefGoogle Scholar
  57. Molina-Montenegro MA, Galleguillos C, Oses R, Acuña-Rodríguez IS, Lavín P, Gallardo-Cerda J et al (2016b) Adaptive phenotypic plasticity and competitive ability deployed under a climate change scenario may promote the invasion of Poa annua in Antarctica. Biol Invas 18:603–618CrossRefGoogle Scholar
  58. Nyakatya MJ, McGeoch MA (2008) Temperature variation across Marion Island associated with a keystone plant species (Azorella selago Hook. (Apiaceae)). Polar Biol 31:139–151CrossRefGoogle Scholar
  59. Olech M (1996) Human impact on terrestrial ecosystem in west Antarctica. Proc NIPR Symp Polar Biol 9:299–306Google Scholar
  60. Olech M, Chwedorzewska KJ (2008) Population growth of alien species Poa annua L. at the vicinity of H. Arctowski station (South Shetland Is). SCAR/IASC first international polar year 2007–2009, Open science conference “polar research—Arctic and Antarctic perspectives in the international polar year” St. Petersburg, Russia 8–11 czerwca 2008, XXX SCAR meetingGoogle Scholar
  61. Pertierra LR, Lara F, Benayas F, Hughes KA (2013) Poa pratensis L., current status of the longest-established non-native vascular plant in the Antarctic. Polar Biol 36:1473–1481CrossRefGoogle Scholar
  62. Pertierra LR, Aragón P, Shaw JD, Bergstrom DM, Terauds A, Olalla-Tárraga MA (2017a) Global thermal niche models of two European grasses show high invasion risks in Antarctica. Glob Change Biol 23:2863–2873CrossRefGoogle Scholar
  63. Pertierra LR, Hughes KA, Tejedo P, Enríquez P, Luciañez MJ, Benayas J (2017b) Eradication of the non-native Poa pratensis colony at Cierva Point, Antarctica: a case study of international cooperation and practical management in an area under multi-party governance. Environ Sci Policy 69:50–56CrossRefGoogle Scholar
  64. Robarge WP, Edwards A, Johnson B (1983) Water and waste water analysis for nitrate via nitration of salicylic acid. Commun Soil Sci Plant Anal 14:1207–1215CrossRefGoogle Scholar
  65. Robinson SA, Wasley J, Tobin AK (2003) Living on the edge: plants and global change in continental and maritime Antarctica. Glob Change Biol 9:1681–1717CrossRefGoogle Scholar
  66. Rodríguez-Echeverría S, Armas C, Pistón N, Hortal S, Pugnaire FI (2013) A role for below-ground biota in plant–plant facilitation. J Ecol 101:1420–1428CrossRefGoogle Scholar
  67. Ruotsalainen AL, Markkola AM, Kozlov MV (2010) Birch effects on root fungal colonization of crowberry are uniform along different environmental gradients. Basic Appl Ecol 11:459–467CrossRefGoogle Scholar
  68. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Inv 1:21–32CrossRefGoogle Scholar
  69. Smith RIL (1996) Introduced plants in Antarctica: potential impacts and conservation issues. Biol Conserv 76:135–146CrossRefGoogle Scholar
  70. Smith RIL, Poncet S (1987) Deschampsia antarctica and Colobanthus quitensis in the Terra Firma Islands. Brit Antarct Surv B 74:31–35Google Scholar
  71. Theodose TA, Bowman WD (1997) The influence of interspecific competition on the distribution of an alpine graminoid: evidence for the importance of plant competition in an extreme environment. Oikos 79:101–114CrossRefGoogle Scholar
  72. Torres-Mellado G, Jaña R, Casanova-Katny MA (2011) Antarctic hairgrass expansion in the South Shetland Archipelago and Antarctic Peninsula revisited. Polar Biol 34:1679–1688CrossRefGoogle Scholar
  73. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD et al (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar
  74. Turner J, Lu H, King JC, Phillips T, Hosking JS, Bracegirdle TJ et al (2016) Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535:e18645CrossRefGoogle Scholar
  75. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA et al (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274CrossRefGoogle Scholar
  76. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF et al (2013) The role of biotic interactions in shaping distributions and realized assemblages of species: implications for species distribution modelling. Biol Rev Camb Philos Soc 88:15–30CrossRefPubMedGoogle Scholar
  77. Wynn-Williams DD (1990) Ecological aspects of antarctic microbiology. Adv Microb Ecol 11:71–146CrossRefGoogle Scholar
  78. Yu F-H, Li P-X, Li S-L, He W-M (2010) Kobresia tibetica tussocks facilitate plant species inside them and increase diversity and reproduction. Basic Appl Ecol 11:743–751CrossRefGoogle Scholar
  79. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cristian Atala
    • 1
  • Luis R. Pertierra
    • 2
  • Pedro Aragón
    • 2
  • Fernando Carrasco-Urra
    • 3
  • Paris Lavín
    • 4
  • Jorge Gallardo-Cerda
    • 5
  • Natalia Ricote-Martínez
    • 6
  • Cristian Torres-Díaz
    • 7
  • Marco A. Molina-Montenegro
    • 5
    • 8
    Email author
  1. 1.Laboratorio de Anatomía y Ecología Funcional de Plantas, Instituto de Biología, Facultad de CienciasPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales (MNCN)MadridSpain
  3. 3.Departamento de BotánicaUniversidad de ConcepciónConcepciónChile
  4. 4.Laboratorio de Complejidad Microbiana y Ecología FuncionalUniversidad de AntofagastaAntofagastaChile
  5. 5.Centro de Estudios Avanzados en Ecología Molecular y Funcional, Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
  6. 6.Departamento de EcologíaPontificia Universidad Católica de ChileSantiagoChile
  7. 7.Laboratorio de Genómica y Biodiversidad (LGB), Departamento de Ciencias Básicas, Facultad de CienciasUniversidad del Bío-BíoChillánChile
  8. 8.Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile

Personalised recommendations