A general model for alien species richness

Abstract

A key question in invasion biology is why some regions have more alien species than others. Here, we provide a general framework to answer this. We model alien species richness as a function of the number of species introduced (colonization pressure) and the probability that each species establishes, which is a function of propagule pressure (the number of introduction events and the number of individuals per event) and the probability that a founding individual leaves a surviving lineage (lineage survival probability). With this model we show that: (a) alien species richness is most sensitive to variation in colonization pressure; (b) heterogeneity in lineage survival probability lowers the probability of population establishment, implying alien richness should be lower in more spatially or temporally variable environments; (c) heterogeneity in lineage survival probability leads to higher alien richness when a given propagule pressure is divided into more introduction events, each involving fewer individuals; and (d) we cannot quantify how specific components, such as lineage survival probability, influence alien species richness without data on other components and knowledge of how these covary. Overall, the model provides novel insights into the factors influencing alien species richness, and shows why we expect anthropogenic effects to be critical to this.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Blackburn TM, Duncan RP (2001) Establishment patterns of exotic birds are constrained by non-random patterns in introduction. J Biogeogr 28:927–939. https://doi.org/10.1046/j.1365-2699.2001.00597.x

    Article  Google Scholar 

  2. Blackburn TM, Cassey P, Lockwood JL (2008) The island biogeography of exotic bird species. Glob Ecol Biogeogr 17:246–251. https://doi.org/10.1111/j.1466-8238.2007.00361.x

    Article  Google Scholar 

  3. Blackburn TM, Lockwood JL, Cassey P (2009) Avian invasions: the ecology and evolution of exotic birds. Oxford University Press, Oxford

    Google Scholar 

  4. Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. https://doi.org/10.1016/j.tree.2011.03.023

    Article  Google Scholar 

  5. Blackburn TM, Scrivens SL, Heinrich S, Cassey P (2017) Patterns of selectivity in introductions of mammal species worldwide. NeoBiota 33:33–51. https://doi.org/10.3897/neobiota.33.10471

    Article  Google Scholar 

  6. Case TJ (1996) Global patterns in the establishment and distribution of exotic birds. Biol Conserv 78:69–96. https://doi.org/10.1016/0006-3207(96)00019-5

    Article  Google Scholar 

  7. Cassey P, Blackburn TM, Jones KE, Lockwood JL (2004a) Mistakes in the analysis of exotic species establishment: source pool designation and correlates of introduction success among parrots (Aves: Psittaciformes) of the world. J Biogeogr 31:277–284. https://doi.org/10.1046/j.0305-0270.2003.00979.x

    Article  Google Scholar 

  8. Cassey P, Blackburn TM, Sol D et al (2004b) Global patterns of introduction effort and establishment success in birds. Proc R Soc Lond Ser B 271:S405–S408. https://doi.org/10.1098/rsbl.2004.0199

    Article  Google Scholar 

  9. Cassey P, Prowse TAA, Blackburn TM (2014) A population model for predicting the successful establishment of introduced bird species. Oecologia 175:417–428. https://doi.org/10.1007/s00442-014-2902-1

    Article  PubMed  Google Scholar 

  10. Cassey P, Delean S, Lockwood JL et al (2018) Dissecting the null model for biological invasions: a meta-analysis of the propagule pressure effect. PLoS Biol 16:1–15. https://doi.org/10.1371/journal.pbio.2005987

    CAS  Article  Google Scholar 

  11. Catford JA, Vesk PA, Richardson DM, Pyšek P (2012) Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Glob Change Biol 18:44–62. https://doi.org/10.1111/j.1365-2486.2011.02549.x

    Article  Google Scholar 

  12. Chapple DG, Simmonds SM, Wong BBM (2012) Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol Evol 27:57–62. https://doi.org/10.1016/j.tree.2011.09.010

    Article  PubMed  Google Scholar 

  13. Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037. https://doi.org/10.1007/s10530-005-3735-y

    Article  Google Scholar 

  14. Dawson W, Moser D, Van Kleunen M et al (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nat Ecol Evol 1:1–7. https://doi.org/10.1038/s41559-017-0186

    Article  Google Scholar 

  15. Dennis B (2002) Allee effects in stochastic populations. Oikos 96:389–401. https://doi.org/10.1034/j.1600-0706.2002.960301.x

    Article  Google Scholar 

  16. Diez JM, Williams PAA, Randall RP et al (2009) Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol Lett 12:1174–1183. https://doi.org/10.1111/j.1461-0248.2009.01376.x

    Article  PubMed  Google Scholar 

  17. Drake JM (2004) Allee effects and the risk of biological invasion. Risk Anal 24:795–802. https://doi.org/10.1111/j.0272-4332.2004.00479.x

    Article  PubMed  Google Scholar 

  18. Drake JA, di Castri F, Groves RH et al (1989) Biological invasions. A global perspective. John Wiley & Sons, Chichester

    Google Scholar 

  19. Duncan RP (1997) The role of competition and introduction effort in the success of passeriform birds introduced to New Zealand. Am Nat 149:903–915. https://doi.org/10.1086/286029

    CAS  Article  PubMed  Google Scholar 

  20. Duncan RP (2016) How propagule size and environmental suitability jointly determine establishment success: a test using dung beetle introductions. Biol Invasions 18:985–996. https://doi.org/10.1007/s10530-016-1083-8

    Article  Google Scholar 

  21. Duncan RP, Blackburn TM (2002) Morphological over-dispersion in game birds (Aves: Galliformes) successfully introduced to New Zealand was not caused by interspecific competition. Evol Ecol Res 4:551–561

    Google Scholar 

  22. Duncan RP, Blackburn TM, Sol D (2003) The ecology of bird introductions. Annu Rev Ecol Evol Syst 34:71–98. https://doi.org/10.1146/annurev.ecolsys.34.011802.132353

    Article  Google Scholar 

  23. Duncan RP, Blackburn TM, Rossinelli S, Bacher S (2014) Quantifying invasion risk: the relationship between establishment probability and founding population size. Methods Ecol Evol 5:1255–1263. https://doi.org/10.1111/2041-210X.12288

    Article  Google Scholar 

  24. Dyer EE, Cassey P, Redding DW et al (2017) The global distribution and drivers of alien bird species richness. PLoS Biol 15:1–25. https://doi.org/10.1371/journal.pbio.2000942

    CAS  Article  Google Scholar 

  25. Elton C (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  26. Gaertner M, Wilson JRU, Cadotte MW et al (2017) Non-native species in urban environments: patterns, processes, impacts and challenges. Biol Invasions 19:3461–3469. https://doi.org/10.1007/s10530-017-1598-7

    Article  Google Scholar 

  27. García-Díaz P, Ross JV, Ayres C, Cassey P (2015) Understanding the biological invasion risk posed by the global wildlife trade: propagule pressure drives the introduction and establishment of Nearctic turtles. Glob Change Biol 21:1078–1091. https://doi.org/10.1111/gcb.12790

    Article  Google Scholar 

  28. Grevstad FS (1999) Factors influencing the chance of population establishment: implications for release strategies in biocontrol. Ecol Appl 9:1439–1447

    Article  Google Scholar 

  29. Haccou P, Iwasa Y (1996) Establishment probability in fluctuating environments: a branching process model. Theor Popul Biol 50:254–280. https://doi.org/10.1006/tpbi.1996.0031

    CAS  Article  PubMed  Google Scholar 

  30. Haccou P, Vatutin V (2003) Establishment success and extinction risk in autocorrelated environments. Theor Popul Biol 64:303–314. https://doi.org/10.1016/S0040-5809(03)00092-3

    Article  PubMed  Google Scholar 

  31. Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506

    Article  Google Scholar 

  32. Hopper KR, Roush RT (1993) Mate finding, dispersal, number released, and the success of biological control introductions. Ecol Entomol 18:321–331. https://doi.org/10.1111/j.1365-2311.1993.tb01108.x

    Article  Google Scholar 

  33. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18. https://doi.org/10.1111/j.1365-2664.2008.01600.x

    Article  Google Scholar 

  34. Jeschke JM, Strayer DL (2006) Determinants of vertebrate invasion success in Europe and North America. Glob Change Biol 12:1608–1619. https://doi.org/10.1111/j.1365-2486.2006.01213.x

    Article  Google Scholar 

  35. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204. https://doi.org/10.1016/s0169-5347(01)02101-2

    Article  PubMed  Google Scholar 

  36. Lande R, Engen S, Sæther B-E (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, Oxford

    Google Scholar 

  37. Leung B, Drake JM, Lodge DM (2004) Predicting invasions: propagule pressure and the gravity of Allee effects. Ecology 85:1651–1660. https://doi.org/10.1890/02-0571

    Article  Google Scholar 

  38. Leung B, Roura-Pascual N, Bacher S et al (2012) TEASIng apart alien species risk assessments: a framework for best practices. Ecol Lett 15:1475–1493. https://doi.org/10.1111/ele.12003

    Article  PubMed  Google Scholar 

  39. Levine JM, D’Antonio CM (2003) Forecasting biological invasions with increasing international trade. Conserv Biol 17:322–326. https://doi.org/10.1046/j.1523-1739.2003.02038.x

    Article  Google Scholar 

  40. Lockwood JL, Cassey P, Blackburn TM (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  Google Scholar 

  41. Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910. https://doi.org/10.1111/j.1472-4642.2009.00594.x

    Article  Google Scholar 

  42. Lonsdale M (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  43. MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution (N Y) 17:373–387. https://doi.org/10.2307/2407089

    Article  Google Scholar 

  44. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  45. Maurel N, Hanspach J, Kühn I et al (2016) Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Glob Ecol Biogeogr. https://doi.org/10.1111/geb.12520

    Article  Google Scholar 

  46. McDowall RM (1994) Gamekeepers for the nation: the story of New Zealand’s acclimatisation societies 1861–1990. Canterbury University Press, Christchurch

    Google Scholar 

  47. McGeoch MA, Butchart SHM, Spear D et al (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers Distrib 16:95–108. https://doi.org/10.1111/j.1472-4642.2009.00633.x

    Article  Google Scholar 

  48. Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208. https://doi.org/10.1890/1540-9295(2007)5%5b199:IASIAE%5d2.0.CO;2

    Article  Google Scholar 

  49. Moulton MP, Pimm SL (1983) The introduced Hawaiian avifauna: biogeographic evidence for competition. Am Nat 121:669–690. https://doi.org/10.1086/284094

    Article  Google Scholar 

  50. Norris RJ, Memmott J, Lovell DJ (2002) The effect of rainfall on the survivorship and establishment of a biocontrol agent. J Appl Ecol 39:226–234. https://doi.org/10.1046/j.1365-2664.2002.00712.x

    Article  Google Scholar 

  51. Peoples BK, Goforth RR (2017) The indirect role of species-level factors in biological invasions. Glob Ecol Biogeogr 26:524–532. https://doi.org/10.1111/geb.12567

    Article  Google Scholar 

  52. Pigot AL, Cassey P, Blackburn TM (2018) How to incorporate information on propagule pressure in the analysis of alien establishment success. Methods Ecol Evol 9:1097–1108. https://doi.org/10.1111/2041-210X.12930

    Article  Google Scholar 

  53. Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431. https://doi.org/10.1191/0309133306pp490pr

    Article  Google Scholar 

  54. Sax DF, Gaines SD, Brown JH (2002) Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. Am Nat 160:766–783. https://doi.org/10.1086/343877

    Article  PubMed  Google Scholar 

  55. Schreiber SJ, Lloyd-Smith JO (2009) Invasion dynamics in spatially heterogeneous environments. Am Nat 174:490–505

    Article  Google Scholar 

  56. Seebens H, Blackburn TM, Dyer EE et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:1–9. https://doi.org/10.1038/ncomms14435

    CAS  Article  Google Scholar 

  57. Seebens H, Blackburn TM, Dyer EE et al (2018) Global rise in emerging alien species results from increased accessibility of new source pools. Proc Natl Acad Sci 115:201719429. https://doi.org/10.1073/pnas.1719429115

    CAS  Article  Google Scholar 

  58. Shea K, Chesson PL (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. https://doi.org/10.1016/s0169-5347(02)02495-3

    Article  Google Scholar 

  59. Sikes BA, Bufford JL, Hulme PE et al (2018) Import volumes and biosecurity interventions shape the arrival rate of fungal pathogens. PLoS Biol 16:100–101. https://doi.org/10.1371/journal.pbio.2006025

    CAS  Article  Google Scholar 

  60. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102. https://doi.org/10.1146/annurev.ecolsys.110308.120304

    Article  Google Scholar 

  61. Sol D, Maspons J, Vall-Llosera M et al (2012) Unravelling the life history of successful invaders. Science 337:580–583. https://doi.org/10.1126/science.1221523

    CAS  Article  PubMed  Google Scholar 

  62. Stohlgren TJ, Barnett DT, Kartesz JT (1997) The rich get richer: patterns of plant invasions in the United States. Front Ecol Environ 1:11–14. https://doi.org/10.1016/B978-0-7506-5727-3.50005-5

    Article  Google Scholar 

  63. Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci USA 101:10854–10861. https://doi.org/10.1073/pnas.0403458101

    CAS  Article  PubMed  Google Scholar 

  64. Tingley R, Romagosa CM, Kraus F et al (2010) The frog filter: amphibian introduction bias driven by taxonomy, body size and biogeography. Glob Ecol Biogeogr 19:496–503. https://doi.org/10.1111/j.1466-8238.2010.00530.x

    Article  Google Scholar 

  65. Tobin PC, Berec L, Liebhold AM (2011) Exploiting Allee effects for managing biological invasions. Ecol Lett 14:615–624. https://doi.org/10.1111/j.1461-0248.2011.01614.x

    Article  PubMed  Google Scholar 

  66. van Kleunen M, Dawson W, Essl F et al (2015a) Global exchange and accumulation of non-native plants. Nature 525:100–103. https://doi.org/10.1038/nature14910

    CAS  Article  PubMed  Google Scholar 

  67. van Kleunen M, Dawson W, Maurel N (2015b) Characteristics of successful alien plants. Mol Ecol. https://doi.org/10.1111/mec.13013

    Article  PubMed  Google Scholar 

  68. Westphal MI, Browne M, MacKinnon K, Noble I (2007) The link between international trade and the global distribution of invasive alien species. Biol Invasions 10:391–398. https://doi.org/10.1007/s10530-007-9138-5

    Article  Google Scholar 

  69. Williamson M (1996) Biological invasions. Chapman & Hall, London

    Google Scholar 

  70. Wilson JRU, Dormontt EE, Prentis PJ et al (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144. https://doi.org/10.1016/j.tree.2008.10.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Julie Lockwood for helpful comments on an earlier version of this manuscript. This work was supported by Australian Research Council Discovery Project grant DP150101839 to RPD, Centre for Invasive Species Solutions project funding (PO1-I-002) to PC, and Leverhulme Trust Grant RPG-2015-073 to TMB, ALP and PC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tim M. Blackburn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duncan, R.P., Cassey, P., Pigot, A.L. et al. A general model for alien species richness. Biol Invasions 21, 2665–2677 (2019). https://doi.org/10.1007/s10530-019-02003-y

Download citation

Keywords

  • Colonization pressure
  • Establishment
  • Founding population
  • Invasion
  • Lineage survival
  • Propagule pressure