Eco-immunology of native and invasive water bugs in response to water mite parasites: insights from phenoloxidase activity

Abstract

Biological invasions provide an opportunity for ecological and evolutionary exploration of immune function in host–parasite interactions. Studying parasite-induced immune response in native and invasive species can provide novel insights into mechanisms underlying invasion success. We aimed to establish the influence of mite ectoparasites on the invasion of the alien water boatman Trichocorixa verticalis (Corixidae) originating from North America. We examined the variation in a key component of insect immune function (phenoloxidase activity), and condition (fat storage) of T. verticalis and four species of native water boatmen in relation to water mites, combining field and laboratory observations in southern Spain. Mite infection was associated with a general decrease in corixid immune function (but not of fat stores), but to a varying extent in different host species. Immunosuppression was particularly high in the alien species, which also had a particularly high prevalence of mites in both field and laboratory infections. Mite infections may therefore explain the low abundance of the alien corixid in low salinity ponds, where native corixids dominated and mites were abundant. Uninfected T. verticalis had a lower immune function than three native corixid species, probably because the alien is adapted to higher salinities where ectoparasites are absent, supporting the “cost of immunity hypothesis”. This study shows that higher immunocompetence in invasive species is not the rule as previously assumed, and highlights the need to better integrate immunology into invasion biology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allen WL, Street SE, Capellini I (2017) Fast life history traits promote invasion success in amphibians and reptiles. Ecol Lett 20:222–230

    Article  PubMed  Google Scholar 

  2. Arbetman MP, Meeus I, Morales CL, Aizen MA, Smagghe G (2013) Alien parasite hitchhikes to Patagonia on invasive bumblebee. Biol Invasions 15:489–494

    Article  Google Scholar 

  3. Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368

    Article  CAS  Google Scholar 

  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57(1):289–300

    Google Scholar 

  5. Blakeslee AMH, Fowler AE, Keogh CL (2013) Marine invasions and parasite escape, updates and new perspectives. In Advances in marine biology. Academic Press, pp 87–169

  6. Blossey B, Nötzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol 83:887–889

    Article  Google Scholar 

  7. Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161:367–379

    Article  PubMed  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  9. Carbonell JA, Millán A, Green AJ, Céspedes V, Coccia C, Velasco J (2016) What traits underpin the successful establishment and spread of the invasive water bug Trichocorixa verticalis (Fieber, 1851)? Hydrobiologia 768:273–286. https://doi.org/10.1007/s10750-015-2556-y

    Article  Google Scholar 

  10. Carbonell JA, Velasco J, Millan A, Green AJ, Coccia C, Guareschi S, Gutiérrez-Cánovas C (2017) Biological invasion modifies the co-occurrence patterns of insects along a stress gradient. Funct Ecol 31:1957–1968. https://doi.org/10.1111/1365-2435.12884

    Article  Google Scholar 

  11. Céspedes V, Valdecasas AG, Green AJ, Sánchez MI (2019) Waterboatman survival and fecundity is related to ectoparasitism and salinity stress. PLoS ONE 14(1):e0209828. https://doi.org/10.1371/journal.pone.0209828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Charron AJ, Sibley LD (2002) Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. J Cell Sci 115:3049–3059

    CAS  PubMed  Google Scholar 

  13. Coccia C, Vanschoenwinkel B, Brendonck L, Boyero L, Green AJ (2016) Newly created ponds complement natural water bodies for restoration of macroinvertebrate assemblages. Freshw Biol 61:1640–1654. https://doi.org/10.1111/fwb.12804

    Article  Google Scholar 

  14. Cornet S, Brouat C, Diagne C, Charbonnel N (2016) Eco-immunology and bioinvasion: revisiting the evolution of increased competitive ability hypotheses. Evol Appl 9:952–962

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cox FEG (2001) Concomitant infections, parasites and immune responses. Parasitology 122:S23–S38

    Article  PubMed  Google Scholar 

  16. De Block M, Stoks R (2008) Short-term larval food stress and associated compensatory growth reduce adult immune function in a damselfly. Ecol Ent 33:796–801

    Article  Google Scholar 

  17. Demas G, Nelson R- (eds) (2012) Ecoimmunology. Oxford University Press, Oxford

    Google Scholar 

  18. Demas G, Greives T, Chester E, French S (2012) The energetics of immunity. Ecoimmunology 259–296

  19. DiAngelo JR, Bland ML, Bambina S, Cherry S, Birnbaum MJ (2009) The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc Natl Acad Sci USA 106:20853–20858

    Article  PubMed  Google Scholar 

  20. Downer RGH, Matthews JR (1976) Patterns of lipid distribution and utilisation in insects. Am Zool 16:733–745

    Article  CAS  Google Scholar 

  21. Florencio M, Serrano L, Gómez-Rodríguez C, Millán A, Díaz-Paniagua C (2009) Inter- and intra-annual variations of macroinvertebrate assemblages are related to the hydroperiod in mediterranean temporary ponds. Hydrobiologia 634:167–183

    Article  Google Scholar 

  22. Freitak D, Ots I, Vanatoa A, Hörak P (2003) Immune response is energetically costly in white cabbage butterfly pupae. Proc Biol Sci 270:S220–S222

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gandon S, Nuismer SL (2008) Interactions between genetic drift, gene flow, and selection mosaics drive parasite local adaptation. Am Nat 173:212–224

    Article  Google Scholar 

  24. González-Santoyo I, Córdoba-Aguilar A (2012) Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl 142:1–16

    Article  CAS  Google Scholar 

  25. Guareschi S, Coccia C, Sánchez-Fernández D, Carbonell JA, Velasco J, Boyero L, Millán A (2013) How far could the alien boatman Trichocorixa verticalis verticalis spread? Worldwide estimation of its current and future potential distribution. PLoS ONE 8:e59757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janssens L, Stoks R (2013) Exposure to a widespread non-pathogenic bacterium magnifies sublethal pesticide effects in the damselfly Enallagma cyathigerum: from the suborganismal level to fitness-related traits. Environ Pollut 177:143–149

    Article  CAS  PubMed  Google Scholar 

  27. Jansson A (1986) The Corixidae (Heteroptera) of Europe and some adjacent regions. Entomological Society of Finland

  28. Joseph A, Philip R (2007) Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection. Aquaculture 272:87–97

    Article  CAS  Google Scholar 

  29. Kaya M, Mujtaba M, Bulut E, Akyuz B, Zelencova L, Sofi K (2015) Fluctuation in physicochemical properties of chitins extracted from different body parts of honeybee. Carbohydr Polym 132:9–16

    Article  CAS  PubMed  Google Scholar 

  30. Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM (2009) Parasite spillback: a neglected concept in invasion ecology? Ecology 90:2047–2056

    Article  CAS  PubMed  Google Scholar 

  31. Kempel A, Chrobock T, Fischer M, Rohr RP, Van Kleunen M (2013) Determinants of plant establishment success in a multispecies introduction experiment with native and alien species. Proc Natl Acad Sci USA 110:12727–12732

    Article  PubMed  Google Scholar 

  32. Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C (2004) Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 45:1169–1196

    Article  CAS  PubMed  Google Scholar 

  33. Lee KA, Klasing KC (2004) A role for immunology in invasion biology. Trends Ecol Evol 19(10):523–529

    Article  PubMed  Google Scholar 

  34. Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98

    Article  Google Scholar 

  35. Luvizotto-santos R, Lee JT, Branco ZP, Bianchini A, Nery LEM (2003) Lipids as energy source during salinity acclimation in the euryhaline crab Chasmagnathus granulata dana, 1851 (crustacea-grapsidae). J Exp Zool 295:200–205

    Article  Google Scholar 

  36. Mariño-Pérez R, Mayén-Estrada R, Rivas G (2014) Patterns in attachment sites of the parasite Hydrachna guanajuatensis Cook, 1980 (Acari: Hydrachnidiae) on aquatic heteropterans (Nepomorpha) from the Tecocomulco Lake, Mexico. Aquat Insect 36:23–33

    Article  Google Scholar 

  37. Moret Y (2003) Explaining variable costs of the immune response: selection for specific versus non-specific immunity and facultative life history change. Oikos 102:213216

    Article  Google Scholar 

  38. Moret Y, Schmid-Hempel P (2009) Immune responses of bumblebee workers as a function of individual and colony age: senescence versus plastic adjustment of the immune function. Oikos 118(3):371–378

    Article  Google Scholar 

  39. Nunn CL, Lindenfors P, Pursall ER, Rolff J (2009) On sexual dimorphism in immune function. Philos Trans Soc B: Biol Sci 364:61–69

    Article  Google Scholar 

  40. Ostfeld RS, Keesing F (2000) Biodiversity and disease risk: the case of Lyme disease. Conserv Biol 14:722–728

    Article  Google Scholar 

  41. Peck HE, Costa DP, Crocker DE (2016) Body reserves influence allocation to immune responses in capital breeding female northern elephant seals. Funct Ecol 30:389–397

    Article  Google Scholar 

  42. Plaistow S, Siva-Jothy MT (1996) Energetic constraints and male mate-securing tactics in the damselfly Calopteryx splendens xanthostoma (Charpentier). Proc Biol Sci 263:1233–1239

    Article  Google Scholar 

  43. Rabitsch W (2008) Alien true bugs of Europe (Insecta: Hemiptera: Heteroptera). Zootaxa 1827:1–44

    Article  Google Scholar 

  44. Rigaud T, Moret Y (2003) Differential phenoloxidase activity between native and invasive gammarids infected by local acanthocephalans: differential immunosuppression? Parasitology 127:571–577

    Article  CAS  PubMed  Google Scholar 

  45. Rodríguez-Pérez H, Florencio M, Gómez-Rodríguez C, Green AJ, Díaz-Paniagua C, Serrano L (2009) Monitoring the invasion of the aquatic bug Trichocorixa verticalis verticalis (Hemiptera: Corixidae) in the wetlands of Doñana National Park (SW Spain). Hydrobiologia 634:209–217

    Article  Google Scholar 

  46. Rolff J (2002) Bateman’s principle and immunity. Proc Biol Sci 269:867–872

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sánchez MI, Coccia C, Valdecasas AG, Boyero L, Green AJ (2015) Parasitism by water mites in native and exotic Corixidae: are mites limiting the invasion of the water boatman Trichocorixa verticalis (Fieber, 1851)? J Insect Conserv 19:433–447

    Article  Google Scholar 

  48. Sánchez MI, Pons I, Martínez-Haro M, Taggart MA, Lenormand T, Green AJ (2016) When parasites are good for health: cestode parasitism increases resistance to arsenic in brine shrimps. PLoS Pathog 12(3):e1005459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Satterfield DA, Wright AE, Altizer S (2013) Lipid reserves and immune defense in healthy and diseased migrating monarchs Danaus plexippus. Curr Zool 59:393–402

    Article  Google Scholar 

  50. Sheath DJ, Williams CF, Reading AJ, Britton JR (2015) Parasites of non-native freshwater fishes introduced into England and Wales suggest enemy release and parasite acquisition. Biol Invasions 17:2235–2246

    Article  Google Scholar 

  51. Slos S, De Meester L, Stoks R (2009) Food level and sex shape predator-induced physiological stress: immune defence and antioxidant defence. Oecologia 161(3):461–467

    Article  PubMed  Google Scholar 

  52. Smith BP (1977) Water mite parasitism of water boatmen (Hemiptera: Corixidae). (Doctoral dissertation, University of British Columbia)

  53. Smith BP (1988) Host–parasite interaction and impact of larval water mites on insects. Annu Rev Entomol 33:487–507

    Article  Google Scholar 

  54. Söderhäll K, Cerenius L (1998) Role of the prophenoloxidase activating system in invertebrate immunity. Curr Opin Immunol 10:23–28

    Article  Google Scholar 

  55. Somero GN (2012) The physiology of global change: linking patterns to mechanisms. Annu Rev Mar Sci 4:39–61

    Article  Google Scholar 

  56. Stoks R, Block MD, Slos S, Doorslaer WV, Rolff J (2006) Time constraints mediate predator-induced plasticity in immune function, condition, and life history. Ecology 87(4):809–815

    Article  PubMed  Google Scholar 

  57. Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421(6923):628

    Article  CAS  Google Scholar 

  58. Van de Meutter F, Trekels H, Green AJ, Stoks R (2010) Is salinity tolerance the key to success for the invasive water bug Trichocorixa verticalis? Hydrobiologia 649:231–238

    Article  Google Scholar 

  59. Van Kleunen M, Dawson W, Schlaepfer D, Jeschke JM, Fischer M (2010) Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol Lett 13(8):947–958

    PubMed  Google Scholar 

  60. Vargas-Albores F, Hinojosa-Baltazar P, Portillo-Clark G, Magallon-Barajas F (1998) Influence of temperature and salinity on the yellowleg shrimp, Penaeus californieinsis Holmes, prophenoloxidase system. Aquac Res 29:549–553

    Article  Google Scholar 

  61. White TA, Perkins SE (2012) The ecoimmunology of invasive species. Funct Ecol 26:1313–1323

    Article  Google Scholar 

  62. Wilson-Rich N, Starks PT (2010) The Polistes war: weak immune function in the invasive P. dominulus relative to the native P. fuscatus. Insect Soc 57:47–52

    Article  Google Scholar 

  63. Zuk M, Stoehr AM (2002) Immune defense and host life history. Am Nat 160:S9–S22

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Miguel Lozano Terol, Raquel López Luque, Ria Van Houdt and Sara Debecker helped with laboratory and fieldwork. Doñana Natural Space provided permission for fieldwork (2014/31). The staff of the Aquatic Ecology (LEA-EBD) and GIS and Remote Sensing (LAST-EBD) laboratories of EBD-CSIC provided essential assistance.

Funding

This research was funded by the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía project (P10-RNM-6262) to AJG, a Severo Ochoa predoctoral contract (SVP-2013-067595) and a mobility Grant (EEBB-I-15-10016) from the Spanish Ministry of Science and Innovation (MICINN) to VC, and a Ramón y Cajal postdoctoral contract from MICINN to MIS (RYC-2011-09382).

Author information

Affiliations

Authors

Contributions

AJG, MS, RS and VC conceived the ideas and designed methodology. VC and RS collected the data. AJG, MS and VC analysed the data. AJG, MS, and VC led the writing of the manuscript.

Corresponding author

Correspondence to Vanessa Céspedes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data accesibility

All data used in this paper can be found at http://digital.csic.es/handle/10261/159889.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 176 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Céspedes, V., Stoks, R., Green, A.J. et al. Eco-immunology of native and invasive water bugs in response to water mite parasites: insights from phenoloxidase activity. Biol Invasions 21, 2431–2445 (2019). https://doi.org/10.1007/s10530-019-01988-w

Download citation

Keywords

  • Eco-immunology response
  • Ecto-parasites
  • Corixidae
  • Native and invasive insects
  • Phenoloxidase activity