Skip to main content
Log in

Release from intraspecific competition promotes dominance of a non-native invader

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Species can coexist through equalizing (similar fitness abilities) and stabilizing (unique niche requirements) mechanisms—assuming that intraspecific competition imposes more limitation than interspecific competition. Non-native species often de-stabilize coexistence, suggesting that they bring either a fitness advantage or a distinct niche requirement. We tested whether greater fitness or unique niche requirements best explained a successful North American invasion by the European Myrmica rubra ant. North American invaded-range M. rubra aggressively sting and occur in enormous numbers (suggesting a fitness advantage), yet our study site has a history of anthropogenic disturbance that might favor M. rubra (suggesting a unique niche). We compared M. rubra to native ants, principally the dominant North American woodland ant Aphaenogaster picea, using physiological health (lipids and size), monthly bait station surveys and aggression assays to assess fitness abilities, and we used nest surveys and isotope analysis to assess niche characteristics. We confirmed the field observations with laboratory experiments that tested colony aggression (direct competition) and food retrieval (indirect competition). In both the observational and experimental investigations, we found little evidence of M. rubra interspecific competitive advantage (aggression or food retrieval) or niche differentiation. Instead, M. rubra violated the basic assumption of coexistence theory: intraspecific competition consistently was less than interspecific competition. Freed up from the costs and limitations of territorial competition, some non-native species may outcompete native species by not competing with themselves. This ‘friendly release’ from intraspecific competition provides an ecological mechanism for some successful invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams ES (2016) Territoriality in ants (Hymenoptera: Formicidae): a review. Myrmecol News 23:101–118

    Google Scholar 

  • Beattie AJ (1985) The evolutionary ecology of ant-plant mutualism. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Berryman A, Turchin P (2001) Identifying the density-dependent structure underlying ecological time series. Oikos 92:265–270

    Article  Google Scholar 

  • Bertelsmeier C, Avril A, Blight O et al (2015) Different behavioural strategies among seven highly invasive ant species. Biol Invasions 17:2491–2503

    Article  Google Scholar 

  • Bluthgen N, Feldhaar H (2010) Food and shelter: How resources influence ant ecology. In: Lach L, Parr C, Abbott K (eds) Ant ecology. Oxford University Press, New York

    Google Scholar 

  • Brasure D (1996) Control of an alien ant. Buffalo Museum of Science, Buffalo (Unpublished)

    Google Scholar 

  • Brian MV (1952) The structure of a dense natural ant population. J Anim Ecol 21:12–24

    Article  Google Scholar 

  • Calcaterra L, Cabrera S, Briano J (2016) Local co-occurrence of several highly invasive ants in their native range: are they all ecologically dominant species? Insectes Soc 63:407–419

    Article  Google Scholar 

  • Cerda X, Arnan X, Retana J (2013) Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology? Myrmecol. News 18:131–147

    Google Scholar 

  • Chen W, Adams ES (2018) The distribution and habitat affinities of the invasive ant Myrmica rubra (Hymenoptera: Formicidae) in Southern New England. Environ Entomol 47:527–534

    Article  PubMed  CAS  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Ann Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Clark JS, Soltoff BD, Powell AS et al (2012) Evidence from individual inference for high-dimensional coexistence: long-term experiments on recruitment response. PLoS One 7:e30050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daehler CC (2001) Darwin’s naturalization hypothesis revisited. Am Nat 158:324–330

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection or the preservation of favoured races in the struggle for life. Murray, London

    Google Scholar 

  • Diez JM, Sullivan JJ, Hulme PE et al (2008) Darwin’s naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecol Lett 11:674–681

    Article  PubMed  Google Scholar 

  • Elmes GW (1973) Observations on the density of queens in natural colonies of Myrmica rubra L. (Hymenoptera: Formicidae). J Anim Ecol 42:761–771

    Article  Google Scholar 

  • Elmes GW (1980) Queen numbers in colonies of ants of the genus Myrmica. Insectes Soc 27:43–60

    Article  Google Scholar 

  • Errard C, Delabie J, Jourdan H et al (2005) Intercontinental chemical variation in the invasive ant Wasmannia auropunctata (Roger) (Hymenoptera Formicidae): a key to the invasive success of a tramp species. Naturwissenschaften 92:319–323

    Article  PubMed  CAS  Google Scholar 

  • Felker-Quinn E, Schweitzer JA, Bailey JK (2013) Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecol Evol 3:739–751

    Article  PubMed  PubMed Central  Google Scholar 

  • Fournier D, de Biseau J-C, De Laet S et al (2016) Social structure and genetic distance mediate nestmate recognition and aggressiveness in the facultative polygynous ant Pheidole pallidula. PLoS One 11:e0156440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox J (2008) Applied regression analysis and generalized linear models. Sage, Los Angeles

    Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand Oaks

    Google Scholar 

  • Furst MA, Durey M, Nash DR (2011) Testing the adjustable threshold model for intruder recognition on Myrmica ants in the context of a social parasite. Proc R Soc Lond Ser B Biol Sci 279:516–522

    Article  Google Scholar 

  • Garnas J (2004) European fire ants on Mount Desert Island, Maine: population structure, mechanisms of competition and community impacts of Myrmica rubra L. (Hymenoptera: Formicidae). In: Ecology and environmental sciences. The University of Maine, Orono

  • Garnas JR, Drummond FA, Groden E (2007) Intercolony aggression within and among local populations of the invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in coastal Maine. Environ Entomol 36:105–113

    Article  PubMed  Google Scholar 

  • Garnas J, Groden E, Drummond FA (2014) Mechanisms of competitive displacement of native ant fauna by invading Myrmica rubra (Hymenoptera: Formicidae) populations. Environ Entomol 43:1496–1506

    Article  PubMed  Google Scholar 

  • Gibb H, Hochuli DF (2004) Removal experiment reveals limited effects of a behaviorally dominant species on ant assemblages. Ecology 85:648–657

    Article  Google Scholar 

  • Gibb H, Johansson T (2011) Field tests of interspecific competition in ant assemblages: revisiting the dominant red wood ants. J Anim Ecol 80:548–557

    Article  PubMed  Google Scholar 

  • Giraud T, Pedersen JS, Keller L (2002) Evolution of supercolonies: the Argentine ants of southern Europe. Proc Natl Acad Sci USA 99:6075–6079

    Article  PubMed  CAS  Google Scholar 

  • Golivets M, Wallin KF (2018) Neighbour tolerance, not suppression, provides competitive advantage to non-native plants. Ecol Lett 21:745–759

    Article  PubMed  Google Scholar 

  • Goodman M (2018) Experimental evidence that the non-native European fire ant alters invertebrate communities. Department of Biology, SUNY Buffalo State, Buffalo

    Google Scholar 

  • Groden E, Drummond FA, Garnas J et al (2005) Distribution of an invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in Maine. J Econ Entomol 98:1774–1784

    Article  PubMed  Google Scholar 

  • Hicks BJ, Pilgrim BL, Marshall HD (2014) Origins and genetic composition of the European fire ant (Hymenoptera: Formicidae) in Newfoundland, Canada. Can Entomol 146:457–464

    Article  Google Scholar 

  • HilleRisLambers J, Adler PB, Harpole WS et al (2012) Rethinking community assembly through the lens of coexistence theory. Ann Rev Ecol Syst 43:227–248

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap, Cambridge

    Book  Google Scholar 

  • Holway DA (1998) Factors governing rate of invasion: a natural experiment using Argentine ants. Oecologia 115:206–212

    Article  PubMed  Google Scholar 

  • Holway DA, Suarez AV, Case TJ (1998) Lose of intraspecific aggression in the success of a widespread invasive social insect. Science 282:949–952

    Article  PubMed  CAS  Google Scholar 

  • Holway DA, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Ann Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J. 50:346–363

    Article  Google Scholar 

  • Huszár DB, Larsen RS, Carlsen S et al (2014) Convergent development of ecological, genetic, and morphological traits in native supercolonies of the red ant Myrmica rubra. Behav Ecol Sociobiol 68:1859–1870

    Article  Google Scholar 

  • Hutchinson GE (1957) Population studies—animal ecology and demography—concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • King JR, Tschinkel WR (2008) Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc Natl Acad Sci USA 105:20339–20343

    Article  PubMed  Google Scholar 

  • King JR, Warren RJ II, Bradford MA (2013) Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS One 8:e75843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krushelnycky PD, Holway DA, LeBrun EG et al (2010) Invasion processes and causes of success. In: Lach L, Parr C, Abbott K (eds) Ant ecology. Oxford University Press, New York

    Google Scholar 

  • Levine JM, Vila M, D’Antonio CM et al (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond Ser B Biol Sci 270:775–781

    Article  Google Scholar 

  • Lotka AJ (1924) Elements of physical biology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Lubertazzi D (2012) The biology and natural history of Aphaenogaster rudis. Psyche 2012:752815

    Google Scholar 

  • MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615

    Article  Google Scholar 

  • Naumann K, Higgins RJ (2015) The European fire ant (Hymenoptera: Formicidae) as an invasive species: impact on local ant species and other epigaeic arthropods. Can Entomol 147:592–601

    Article  Google Scholar 

  • Ouellette GD, Drummond FA, Choate B et al (2010) Ant diversity and distribution in Acadia National Park, Maine. Environ Entomol 39:1447–1456

    Article  PubMed  Google Scholar 

  • Parr CL, Gibb H (2009) Competition and the role of dominant ants. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, pp 77–96

    Chapter  Google Scholar 

  • Parr CL, Gibb H (2011) The discovery–dominance trade-off is the exception, rather than the rule. J Anim Ecol 81:233–241

    Article  PubMed  Google Scholar 

  • Petal J (1967) Productivity and the consumption of food in the Myrmica laevinodis populations. In: Petrusewicz K (ed) Secondary productivity of terrestrial ecosystems. Polish Academy of Sciences, Warsaw, pp 841–858

    Google Scholar 

  • R Core Team Version 3.5.0 (2018) R: a language and environment for statistical computing, 3.5.0 edn. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Roulston TH, Buczkowski G, Silverman J (2003) Nestmate discrimination in ants: effect of bioassay on aggressive behavior. Insectes Soc 50:151–159

    Article  Google Scholar 

  • Sanders NJ, Suarez AV (2011) Elton’s insights into the ecology of ant invasions: lessons learned and lessons still to be learned. In: Richardson DM (ed) Fifty years of invasion biology: the legacy of Charles Elton. Wiley, West Sussex

    Google Scholar 

  • Sanders NJ, Gotelli NJ, Heller NE et al (2003) Community disassembly by an invasive species. Proc Natl Acad Sci USA 100:2474–2477

    Article  PubMed  CAS  Google Scholar 

  • Savolainen R, Vepsalainen K (1988) A competition hierarchy among boreal ants: impact on resource partitioning and community structure. Oikos 51:135–155

    Article  Google Scholar 

  • Seppa P (1996) Genetic relatedness and colony structure in polygynous Myrmica ants. Ethol Ecol Evol 8:279–290

    Article  Google Scholar 

  • Stachowicz JJ, Tilman D (2005) Species invasions and the relationships between species diversity, community saturation, and ecosystem functioning. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species Invasions: Insights into ecology, evolution, and biogeography. Sinauer, Sunderland, pp 41–64

    Google Scholar 

  • Stevens MHH (2009) A primer of ecology with R. Springer, New York

    Book  Google Scholar 

  • Suarez AV, Tsutsui ND, Holway DA et al (1999) Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biol Invasions 1:43–53

    Article  Google Scholar 

  • Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98:1095–1100

    Article  PubMed  CAS  Google Scholar 

  • Suarez AV, Holway DA, Tsutsui ND (2008) Genetics and behavior of a colonizing species: the invasive Argentine ant. Am Nat 172:S72–S84

    Article  PubMed  Google Scholar 

  • Tillberg CV, McCarthy DP, Dolezal AG et al (2006) Measuring the trophic ecology of ants using stable isotopes. Insectes Soc 53:65–69

    Article  Google Scholar 

  • Tschinkel WR (2006) The fire ants. Harvard University Press, Cambridge

    Google Scholar 

  • Tsutsui ND, Suarez AV, Holway DA et al (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97:5948–5953

    Article  PubMed  CAS  Google Scholar 

  • van der Hammen T, Pederson JS, Boomsma JJ (2002) Convergent development of low-relatedness supercolonies in Myrmica ants. Heredity 89:83–89

    Article  PubMed  CAS  Google Scholar 

  • Volterra V (1931) Lessons on the mathematical theory of the struggle for life (Original: Leçons sur la théorie mathématique de la Lutte pour la vie). Gauthier-Villars, Paris

    Google Scholar 

  • Wardlaw JC, Elmes GW (1996) Exceptional colony size in Myrmica species (Hymenoptera: Formicidae). Entomologist 115:191–196

    Google Scholar 

  • Warren RJ II, Giladi I, Bradford MA (2012) Environmental heterogeneity and interspecific interactions influence occupancy be key seed-dispersing ants. Environ Entomol 41:463–468

    Article  PubMed  Google Scholar 

  • Warren RJ II, McMillan A, King JR et al (2015) Forest invader replaces predation but not dispersal services by a keystone species. Biol Invasions 23:3153–3162

    Article  Google Scholar 

  • Warren RJ II, King J, Chick LD et al (2017) Global change impacts on ant-mediated seed dispersal in eastern North American forests. In: Oliveira PS, Koptur S (eds) Ant-plant interactions. Cambridge University Press, Cambridge

    Google Scholar 

  • Warren RJ II, Candeias M, Labatore AC et al (2018a) Multiple mechanisms in woodland plant species invasion. J Plant Ecol. https://doi.org/10.1093/jpe/rty010

    Article  Google Scholar 

  • Warren II RJ, Mathew A, Reed K, et al. (2018b) Myrmica rubra microhabitat selection and putative ecological impact. Ecol Entomol. https://doi.org/10.1111/een.12700

    Article  Google Scholar 

  • Wetterer JK, Radchenko AG (2011) Worldwide spread of the ruby ant, Myrmica rubra (Hymenoptera: Formicidae). Myrmecol News 14:87–98

    Google Scholar 

  • Wheeler WM (1908) A European ant (Myrmica laevinodis) introduced into Massachusetts. J Econ Entomol 1:336–339

    Article  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the SUNY Buffalo State Office of Undergraduate Research. The authors would like to thank Zandra Wills, Nalah Joseph, Kazz Archibald, Connor Blizzard, Mike Olejniczak, Rabiyah Irfan, Rhudwan Nihlawi and Sonya Bayba for field and laboratory assistance. We also are grateful to Don Brasure and Wayne Gall for collecting data on Tifft ants in the 1990s. We thank two anonymous reviewers for helpful comments on the manuscript. The authors also thank the Buffalo Museum of Science and Tifft Nature Preserve for permission to conduct field research.

Author information

Authors and Affiliations

Authors

Contributions

RW conceived the ideas and designed methodology; KR, AM, KK and MG collected the data; RW and DS supervised data collection. RW led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Robert J. Warren II.

Ethics declarations

Data accessibility

The data generated and analyzed for the current study are available in the SUNY Buffalo State Digital Commons [http://digitalcommons.buffalostate.edu/biology_data/4].

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren, R.J., Reed, K., Mathew, A. et al. Release from intraspecific competition promotes dominance of a non-native invader. Biol Invasions 21, 895–909 (2019). https://doi.org/10.1007/s10530-018-1868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-018-1868-z

Keywords

Navigation