Release from intraspecific competition promotes dominance of a non-native invader

Abstract

Species can coexist through equalizing (similar fitness abilities) and stabilizing (unique niche requirements) mechanisms—assuming that intraspecific competition imposes more limitation than interspecific competition. Non-native species often de-stabilize coexistence, suggesting that they bring either a fitness advantage or a distinct niche requirement. We tested whether greater fitness or unique niche requirements best explained a successful North American invasion by the European Myrmica rubra ant. North American invaded-range M. rubra aggressively sting and occur in enormous numbers (suggesting a fitness advantage), yet our study site has a history of anthropogenic disturbance that might favor M. rubra (suggesting a unique niche). We compared M. rubra to native ants, principally the dominant North American woodland ant Aphaenogaster picea, using physiological health (lipids and size), monthly bait station surveys and aggression assays to assess fitness abilities, and we used nest surveys and isotope analysis to assess niche characteristics. We confirmed the field observations with laboratory experiments that tested colony aggression (direct competition) and food retrieval (indirect competition). In both the observational and experimental investigations, we found little evidence of M. rubra interspecific competitive advantage (aggression or food retrieval) or niche differentiation. Instead, M. rubra violated the basic assumption of coexistence theory: intraspecific competition consistently was less than interspecific competition. Freed up from the costs and limitations of territorial competition, some non-native species may outcompete native species by not competing with themselves. This ‘friendly release’ from intraspecific competition provides an ecological mechanism for some successful invasions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adams ES (2016) Territoriality in ants (Hymenoptera: Formicidae): a review. Myrmecol News 23:101–118

    Google Scholar 

  2. Beattie AJ (1985) The evolutionary ecology of ant-plant mutualism. Cambridge University Press, Cambridge

    Google Scholar 

  3. Berryman A, Turchin P (2001) Identifying the density-dependent structure underlying ecological time series. Oikos 92:265–270

    Article  Google Scholar 

  4. Bertelsmeier C, Avril A, Blight O et al (2015) Different behavioural strategies among seven highly invasive ant species. Biol Invasions 17:2491–2503

    Article  Google Scholar 

  5. Bluthgen N, Feldhaar H (2010) Food and shelter: How resources influence ant ecology. In: Lach L, Parr C, Abbott K (eds) Ant ecology. Oxford University Press, New York

    Google Scholar 

  6. Brasure D (1996) Control of an alien ant. Buffalo Museum of Science, Buffalo (Unpublished)

    Google Scholar 

  7. Brian MV (1952) The structure of a dense natural ant population. J Anim Ecol 21:12–24

    Article  Google Scholar 

  8. Calcaterra L, Cabrera S, Briano J (2016) Local co-occurrence of several highly invasive ants in their native range: are they all ecologically dominant species? Insectes Soc 63:407–419

    Article  Google Scholar 

  9. Cerda X, Arnan X, Retana J (2013) Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology? Myrmecol. News 18:131–147

    Google Scholar 

  10. Chen W, Adams ES (2018) The distribution and habitat affinities of the invasive ant Myrmica rubra (Hymenoptera: Formicidae) in Southern New England. Environ Entomol 47:527–534

    Article  PubMed  CAS  Google Scholar 

  11. Chesson P (2000) Mechanisms of maintenance of species diversity. Ann Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  12. Clark JS, Soltoff BD, Powell AS et al (2012) Evidence from individual inference for high-dimensional coexistence: long-term experiments on recruitment response. PLoS One 7:e30050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Daehler CC (2001) Darwin’s naturalization hypothesis revisited. Am Nat 158:324–330

    Article  PubMed  CAS  Google Scholar 

  14. Darwin C (1859) The origin of species by means of natural selection or the preservation of favoured races in the struggle for life. Murray, London

    Google Scholar 

  15. Diez JM, Sullivan JJ, Hulme PE et al (2008) Darwin’s naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecol Lett 11:674–681

    Article  PubMed  Google Scholar 

  16. Elmes GW (1973) Observations on the density of queens in natural colonies of Myrmica rubra L. (Hymenoptera: Formicidae). J Anim Ecol 42:761–771

    Article  Google Scholar 

  17. Elmes GW (1980) Queen numbers in colonies of ants of the genus Myrmica. Insectes Soc 27:43–60

    Article  Google Scholar 

  18. Errard C, Delabie J, Jourdan H et al (2005) Intercontinental chemical variation in the invasive ant Wasmannia auropunctata (Roger) (Hymenoptera Formicidae): a key to the invasive success of a tramp species. Naturwissenschaften 92:319–323

    Article  PubMed  CAS  Google Scholar 

  19. Felker-Quinn E, Schweitzer JA, Bailey JK (2013) Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecol Evol 3:739–751

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fournier D, de Biseau J-C, De Laet S et al (2016) Social structure and genetic distance mediate nestmate recognition and aggressiveness in the facultative polygynous ant Pheidole pallidula. PLoS One 11:e0156440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fox J (2008) Applied regression analysis and generalized linear models. Sage, Los Angeles

    Google Scholar 

  22. Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand Oaks

    Google Scholar 

  23. Furst MA, Durey M, Nash DR (2011) Testing the adjustable threshold model for intruder recognition on Myrmica ants in the context of a social parasite. Proc R Soc Lond Ser B Biol Sci 279:516–522

    Article  Google Scholar 

  24. Garnas J (2004) European fire ants on Mount Desert Island, Maine: population structure, mechanisms of competition and community impacts of Myrmica rubra L. (Hymenoptera: Formicidae). In: Ecology and environmental sciences. The University of Maine, Orono

  25. Garnas JR, Drummond FA, Groden E (2007) Intercolony aggression within and among local populations of the invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in coastal Maine. Environ Entomol 36:105–113

    Article  PubMed  Google Scholar 

  26. Garnas J, Groden E, Drummond FA (2014) Mechanisms of competitive displacement of native ant fauna by invading Myrmica rubra (Hymenoptera: Formicidae) populations. Environ Entomol 43:1496–1506

    Article  PubMed  Google Scholar 

  27. Gibb H, Hochuli DF (2004) Removal experiment reveals limited effects of a behaviorally dominant species on ant assemblages. Ecology 85:648–657

    Article  Google Scholar 

  28. Gibb H, Johansson T (2011) Field tests of interspecific competition in ant assemblages: revisiting the dominant red wood ants. J Anim Ecol 80:548–557

    Article  PubMed  Google Scholar 

  29. Giraud T, Pedersen JS, Keller L (2002) Evolution of supercolonies: the Argentine ants of southern Europe. Proc Natl Acad Sci USA 99:6075–6079

    Article  PubMed  CAS  Google Scholar 

  30. Golivets M, Wallin KF (2018) Neighbour tolerance, not suppression, provides competitive advantage to non-native plants. Ecol Lett 21:745–759

    Article  PubMed  Google Scholar 

  31. Goodman M (2018) Experimental evidence that the non-native European fire ant alters invertebrate communities. Department of Biology, SUNY Buffalo State, Buffalo

    Google Scholar 

  32. Groden E, Drummond FA, Garnas J et al (2005) Distribution of an invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in Maine. J Econ Entomol 98:1774–1784

    Article  PubMed  Google Scholar 

  33. Hicks BJ, Pilgrim BL, Marshall HD (2014) Origins and genetic composition of the European fire ant (Hymenoptera: Formicidae) in Newfoundland, Canada. Can Entomol 146:457–464

    Article  Google Scholar 

  34. HilleRisLambers J, Adler PB, Harpole WS et al (2012) Rethinking community assembly through the lens of coexistence theory. Ann Rev Ecol Syst 43:227–248

    Article  Google Scholar 

  35. Hölldobler B, Wilson EO (1990) The ants. Belknap, Cambridge

    Google Scholar 

  36. Holway DA (1998) Factors governing rate of invasion: a natural experiment using Argentine ants. Oecologia 115:206–212

    Article  PubMed  Google Scholar 

  37. Holway DA, Suarez AV, Case TJ (1998) Lose of intraspecific aggression in the success of a widespread invasive social insect. Science 282:949–952

    Article  PubMed  CAS  Google Scholar 

  38. Holway DA, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Ann Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  39. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J. 50:346–363

    Article  Google Scholar 

  40. Huszár DB, Larsen RS, Carlsen S et al (2014) Convergent development of ecological, genetic, and morphological traits in native supercolonies of the red ant Myrmica rubra. Behav Ecol Sociobiol 68:1859–1870

    Article  Google Scholar 

  41. Hutchinson GE (1957) Population studies—animal ecology and demography—concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Article  Google Scholar 

  42. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  43. King JR, Tschinkel WR (2008) Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc Natl Acad Sci USA 105:20339–20343

    Article  PubMed  Google Scholar 

  44. King JR, Warren RJ II, Bradford MA (2013) Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS One 8:e75843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Krushelnycky PD, Holway DA, LeBrun EG et al (2010) Invasion processes and causes of success. In: Lach L, Parr C, Abbott K (eds) Ant ecology. Oxford University Press, New York

    Google Scholar 

  46. Levine JM, Vila M, D’Antonio CM et al (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond Ser B Biol Sci 270:775–781

    Article  Google Scholar 

  47. Lotka AJ (1924) Elements of physical biology. Williams and Wilkins, Baltimore

    Google Scholar 

  48. Lubertazzi D (2012) The biology and natural history of Aphaenogaster rudis. Psyche 2012:752815

    Google Scholar 

  49. MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615

    Article  Google Scholar 

  50. Naumann K, Higgins RJ (2015) The European fire ant (Hymenoptera: Formicidae) as an invasive species: impact on local ant species and other epigaeic arthropods. Can Entomol 147:592–601

    Article  Google Scholar 

  51. Ouellette GD, Drummond FA, Choate B et al (2010) Ant diversity and distribution in Acadia National Park, Maine. Environ Entomol 39:1447–1456

    Article  PubMed  Google Scholar 

  52. Parr CL, Gibb H (2009) Competition and the role of dominant ants. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, pp 77–96

    Google Scholar 

  53. Parr CL, Gibb H (2011) The discovery–dominance trade-off is the exception, rather than the rule. J Anim Ecol 81:233–241

    Article  PubMed  Google Scholar 

  54. Petal J (1967) Productivity and the consumption of food in the Myrmica laevinodis populations. In: Petrusewicz K (ed) Secondary productivity of terrestrial ecosystems. Polish Academy of Sciences, Warsaw, pp 841–858

    Google Scholar 

  55. R Core Team Version 3.5.0 (2018) R: a language and environment for statistical computing, 3.5.0 edn. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  56. Roulston TH, Buczkowski G, Silverman J (2003) Nestmate discrimination in ants: effect of bioassay on aggressive behavior. Insectes Soc 50:151–159

    Article  Google Scholar 

  57. Sanders NJ, Suarez AV (2011) Elton’s insights into the ecology of ant invasions: lessons learned and lessons still to be learned. In: Richardson DM (ed) Fifty years of invasion biology: the legacy of Charles Elton. Wiley, West Sussex

    Google Scholar 

  58. Sanders NJ, Gotelli NJ, Heller NE et al (2003) Community disassembly by an invasive species. Proc Natl Acad Sci USA 100:2474–2477

    Article  PubMed  CAS  Google Scholar 

  59. Savolainen R, Vepsalainen K (1988) A competition hierarchy among boreal ants: impact on resource partitioning and community structure. Oikos 51:135–155

    Article  Google Scholar 

  60. Seppa P (1996) Genetic relatedness and colony structure in polygynous Myrmica ants. Ethol Ecol Evol 8:279–290

    Article  Google Scholar 

  61. Stachowicz JJ, Tilman D (2005) Species invasions and the relationships between species diversity, community saturation, and ecosystem functioning. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species Invasions: Insights into ecology, evolution, and biogeography. Sinauer, Sunderland, pp 41–64

    Google Scholar 

  62. Stevens MHH (2009) A primer of ecology with R. Springer, New York

    Google Scholar 

  63. Suarez AV, Tsutsui ND, Holway DA et al (1999) Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biol Invasions 1:43–53

    Article  Google Scholar 

  64. Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98:1095–1100

    Article  PubMed  CAS  Google Scholar 

  65. Suarez AV, Holway DA, Tsutsui ND (2008) Genetics and behavior of a colonizing species: the invasive Argentine ant. Am Nat 172:S72–S84

    Article  PubMed  Google Scholar 

  66. Tillberg CV, McCarthy DP, Dolezal AG et al (2006) Measuring the trophic ecology of ants using stable isotopes. Insectes Soc 53:65–69

    Article  Google Scholar 

  67. Tschinkel WR (2006) The fire ants. Harvard University Press, Cambridge

    Google Scholar 

  68. Tsutsui ND, Suarez AV, Holway DA et al (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97:5948–5953

    Article  PubMed  CAS  Google Scholar 

  69. van der Hammen T, Pederson JS, Boomsma JJ (2002) Convergent development of low-relatedness supercolonies in Myrmica ants. Heredity 89:83–89

    Article  PubMed  CAS  Google Scholar 

  70. Volterra V (1931) Lessons on the mathematical theory of the struggle for life (Original: Leçons sur la théorie mathématique de la Lutte pour la vie). Gauthier-Villars, Paris

    Google Scholar 

  71. Wardlaw JC, Elmes GW (1996) Exceptional colony size in Myrmica species (Hymenoptera: Formicidae). Entomologist 115:191–196

    Google Scholar 

  72. Warren RJ II, Giladi I, Bradford MA (2012) Environmental heterogeneity and interspecific interactions influence occupancy be key seed-dispersing ants. Environ Entomol 41:463–468

    Article  PubMed  Google Scholar 

  73. Warren RJ II, McMillan A, King JR et al (2015) Forest invader replaces predation but not dispersal services by a keystone species. Biol Invasions 23:3153–3162

    Article  Google Scholar 

  74. Warren RJ II, King J, Chick LD et al (2017) Global change impacts on ant-mediated seed dispersal in eastern North American forests. In: Oliveira PS, Koptur S (eds) Ant-plant interactions. Cambridge University Press, Cambridge

    Google Scholar 

  75. Warren RJ II, Candeias M, Labatore AC et al (2018a) Multiple mechanisms in woodland plant species invasion. J Plant Ecol. https://doi.org/10.1093/jpe/rty010

    Article  Google Scholar 

  76. Warren II RJ, Mathew A, Reed K, et al. (2018b) Myrmica rubra microhabitat selection and putative ecological impact. Ecol Entomol. https://doi.org/10.1111/een.12700

    Article  Google Scholar 

  77. Wetterer JK, Radchenko AG (2011) Worldwide spread of the ruby ant, Myrmica rubra (Hymenoptera: Formicidae). Myrmecol News 14:87–98

    Google Scholar 

  78. Wheeler WM (1908) A European ant (Myrmica laevinodis) introduced into Massachusetts. J Econ Entomol 1:336–339

    Article  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the SUNY Buffalo State Office of Undergraduate Research. The authors would like to thank Zandra Wills, Nalah Joseph, Kazz Archibald, Connor Blizzard, Mike Olejniczak, Rabiyah Irfan, Rhudwan Nihlawi and Sonya Bayba for field and laboratory assistance. We also are grateful to Don Brasure and Wayne Gall for collecting data on Tifft ants in the 1990s. We thank two anonymous reviewers for helpful comments on the manuscript. The authors also thank the Buffalo Museum of Science and Tifft Nature Preserve for permission to conduct field research.

Author information

Affiliations

Authors

Contributions

RW conceived the ideas and designed methodology; KR, AM, KK and MG collected the data; RW and DS supervised data collection. RW led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Robert J. Warren II.

Ethics declarations

Data accessibility

The data generated and analyzed for the current study are available in the SUNY Buffalo State Digital Commons [http://digitalcommons.buffalostate.edu/biology_data/4].

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Warren, R.J., Reed, K., Mathew, A. et al. Release from intraspecific competition promotes dominance of a non-native invader. Biol Invasions 21, 895–909 (2019). https://doi.org/10.1007/s10530-018-1868-z

Download citation

Keywords

  • Aphaenogaster
  • Coexistence
  • Competition
  • Myrmica rubra
  • Niche
  • Supercolony