Advertisement

Biological Invasions

, Volume 21, Issue 3, pp 861–873 | Cite as

A global assessment of terrestrial alien ferns (Polypodiophyta): species’ traits as drivers of naturalisation and invasion

  • Emily J. JonesEmail author
  • Tineke Kraaij
  • Herve Fritz
  • Desika Moodley
Original Paper

Abstract

The global threat posed by invasive alien plants has prompted inventory compilations and screening exercises that aim to understand invasiveness in various taxa. Various traits influence the invasiveness of a species but do not apply to all plant taxa. Ferns are rare or absent from such inventories, but notable fern invasions do exist. We developed a global inventory of terrestrial alien true ferns (Polypodiophyta) comprising 157 species, using published literature and online inventories. We aimed to determine which traits influence the probability that a terrestrial alien fern will become naturalised or invasive. Generalised linear models with transition stages as response variables, were used to assess the effects of various anthropogenic, biological and distributional traits on invasiveness. Our model explained 30–40% of the variance associated with invasiveness and showed that a ground-dwelling life form, reproductive plasticity, tolerance for disturbance and varied light conditions, and a broad introduced range (interpreted as high environmental tolerance and popularity in horticulture) were important determinants of invasiveness in alien ferns. We highlighted which geographic regions and fern families had the highest incidences of alien ferns and identified particular species of concern. This study aids in the understanding of the mechanisms underlying invasiveness in alien ferns and the findings can inform future research on this understudied taxon as invasive species.

Keywords

Alien ferns Global inventory Invasion stage Introduced range Native range Reproductive plasticity 

Notes

Acknowledgements

This work was supported by the South African National Department of Environment Affairs through its funding of the South African National Biodiversity Institute Invasive Species Programme and by Nelson Mandela University (Grant No. P010). We thank Ronel Klopper whom extracted relevant data from the PRECIS database, and Neil Crouch for his invaluable advice and guidance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10530_2018_1866_MOESM1_ESM.xlsx (58 kb)
Supplementary material 1 (XLSX 58 kb)
10530_2018_1866_MOESM2_ESM.xlsx (10 kb)
Supplementary material 2 (XLSX 9 kb)
10530_2018_1866_MOESM3_ESM.jpg (3.5 mb)
Supplementary material 3 (JPEG 3623 kb)

References

  1. Arosa ML, Ceia RS, Quintanilla LG, Ramos JA (2012) The tree fern Dicksonia antarctica invades two habitats of European conservation priority in São Miguel Island, Azores. Biol Invasions 14:1317–1323CrossRefGoogle Scholar
  2. Baard J, Kraaij T (2014) Alien flora of the Garden Route National Park, South Africa. S Afr J Bot 94:51–63CrossRefGoogle Scholar
  3. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JR, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339CrossRefPubMedGoogle Scholar
  4. Carlton J (2003) Invasive species: vectors and management strategies. Island Press, Washington. ISBN 1-55963-902-4Google Scholar
  5. Chau MM, Walker LR, Mehltreter K (2013) An invasive tree fern alters soil and plant nutrient dynamics in Hawaii. Biol Invasions 15:355–370CrossRefGoogle Scholar
  6. Christenhusz MJ, Chase MW (2014) Trends and concepts in fern classification. Ann Bot 113(4):571–594CrossRefPubMedPubMedCentralGoogle Scholar
  7. Christenhusz MJ, Toivonen TK (2008) Giants invading the tropics: the oriental vessel fern, Angiopteris evecta (Marattiaceae). Biol Invasions 10(8):1215–1228CrossRefGoogle Scholar
  8. Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037CrossRefGoogle Scholar
  9. Dawson W, Burslem DF, Hulme PE (2009) Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J Ecol 97:657–665CrossRefGoogle Scholar
  10. de Groot GA, Verduyn B, Wubs EJ, Erkens RH, During HJ (2012) Inter-and intraspecific variation in fern mating systems after long-distance colonization: the importance of selfing. BMC Plant Biol 12:3CrossRefPubMedPubMedCentralGoogle Scholar
  11. de Winter W, Amoroso V (eds) (2003) Cryptogams: ferns and fern allies. In: Plant resources of South East Asia, vol 15. Backhuys publishers, KerkwerveGoogle Scholar
  12. Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007) The horticultural trade and ornamental plant invasions in Britain. Conserv Biol 21:224–231CrossRefPubMedGoogle Scholar
  13. Durand LZ, Goldstein G (2001) Growth, leaf characteristics, and spore production in native and invasive tree ferns in Hawaii. Am Fern J 91:25–35CrossRefGoogle Scholar
  14. Falk-Petersen J, Bøhn T, Sandlund OT (2006) On the numerous concepts in invasion biology. Biol Invasions 8:1409–1424CrossRefGoogle Scholar
  15. Ferrer-Castán D, Vetaas OR (2005) Pteridophyte richness, climate and topography in the Iberian Peninsula: comparing spatial and nonspatial models of richness patterns. Glob Ecol Biogeogr 14:155–165CrossRefGoogle Scholar
  16. FLEPPC (2017) List of Florida’s invasive plant species. http://www.fleppc.org. Accessed 2 March 2018
  17. Goolsby JA (2004) Potential distribution of the invasive Old World climbing fern, Lygodium microphyllum in North and South America. Nat Areas J 24(4):351–353Google Scholar
  18. Grotkopp E, Rejmánek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am J Bot 94:526–532CrossRefPubMedGoogle Scholar
  19. Hennequin S, Rouhan G, Salino A, Duan Y-F, Lepeigneux M-C, Guillou M, Ansell S, Almeida TE, Zhang L-B, Schneider H (2017) Global phylogeny and biogeography of the fern genus Ctenitis (Dryopteridaceae), with a focus on the Indian Ocean region. Mol Phylogenet Evol 112:277–289CrossRefPubMedGoogle Scholar
  20. Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337CrossRefGoogle Scholar
  21. Kessler M (2010) Biogeography of ferns. In: Mehltreter K, Walker L, Sharpe J (eds) Fern ecology. Cambridge University Press, Cambridge, pp 22–60CrossRefGoogle Scholar
  22. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204CrossRefPubMedGoogle Scholar
  23. Latombe G, Pyšek P, Jeschke JM, Blackburn TM, Bacher S, Capinha C, Costello MJ, Fernández M, Gregory RD, Hobern D (2017) A vision for global monitoring of biological invasions. Biol Conserv 213:295–308CrossRefGoogle Scholar
  24. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613CrossRefGoogle Scholar
  25. Lloyd RM (1974) Reproductive biology and evolution in the Pteridophyta. Ann Missouri Bot Gard 61:318–331CrossRefGoogle Scholar
  26. Lott MS, Volin JC, Pemberton RW, Austin DF (2003) The reproductive biology of the invasive ferns Lygodium microphyllum and L. japonicum (Schizaeaceae): implications for invasive potential. Am J Bot 90:1144–1152CrossRefPubMedGoogle Scholar
  27. Lowe E (1864) A natural history of new and rare ferns. George Bell and Sons, London, York Street, Covent GardenGoogle Scholar
  28. Medeiros A, Loope L, Flynn T, Anderson S, Cuddihy L, Wilson K (1992) Notes on the status of an invasive Australian tree fern (Cyathea cooperi) in Hawaiian rain forests. Am Fern J 82:27–33CrossRefGoogle Scholar
  29. Mehltreter K (2006) Leaf phenology of the climbing fern Lygodium venustum in a semideciduous lowland forest on the Gulf of Mexico. Am Fern J 96(1):21–30CrossRefGoogle Scholar
  30. Mehltreter K, Sharpe J (2013) Causes and consequences of the variability of leaf lifespan of ferns. Fern Gaz 19:193–202Google Scholar
  31. Millennium Ecosystem Assessment (MA) (2005) Ecosystems and human well-being: synthesis. Island Press, WashingtonGoogle Scholar
  32. Miller JT, Hui C, Thornhill AH, Gallien L, Le Roux JJ, Richardson DM (2017) Is invasion success of Australian trees mediated by their native biogeography, phylogenetic history, or both? AoB Plants 9:plw080Google Scholar
  33. Moodley D, Geerts S, Richardson DM, Wilson JR (2013) Different traits determine introduction, naturalization and invasion success in woody plants: proteaceae as a test case. PLoS ONE 8:e75078CrossRefPubMedPubMedCentralGoogle Scholar
  34. Moodley D, Procheş Ş, Wilson JR (2016) A global assessment of a large monocot family highlights the need for group-specific analyses of invasiveness. AoB Plants 8:plw009CrossRefPubMedPubMedCentralGoogle Scholar
  35. Morajkar S, Sajeev S, Hegde S (2015) Ferns: a thriving group of Urban dwellers. Bionature 35:13–21Google Scholar
  36. Murakami K, Matsui R, Morimoto Y (2007) Northward invasion and range expansion of the invasive fern Thelypteris dentata (Forssk.) St. John into the urban matrix of three prefectures in Kinki District, Japan. Am Fern J 97:186–198CrossRefGoogle Scholar
  37. Page CN (2002) Ecological strategies in fern evolution: a neopteridological overview. Rev Palaeobot Palynol 119(1–2):1–33CrossRefGoogle Scholar
  38. Peck JH, Peck CJ, Farrar DR (1990) Influences of life history events on the formation of local and distant fern populations. Am Fern J 80:126–142CrossRefGoogle Scholar
  39. Pemberton RW (2003) The common staghorn fern, Platycerium bifurcatum, naturalizes in southern Florida. Am Fern J 93:203–206CrossRefGoogle Scholar
  40. Pemberton R, Goolsby J, Wright A (2002) Old World climbing fern. In: van Driesche R et al (eds) Biological control of Invasive Plants in the Eastern United States, vol 10. Forest Health Technology Enterprise Team, Morgantown, pp 139–147Google Scholar
  41. Pyšek P, Richardson DM (2008) Traits associated with invasiveness in alien plants: where do we stand? Biological invasions. Springer, BerlinGoogle Scholar
  42. Pyšek P, Křivánek M, Jarošík V (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90:2734–2744CrossRefPubMedGoogle Scholar
  43. Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737CrossRefGoogle Scholar
  44. Pyšek P, Pergl J, Essl F, Lenzner B, Dawson W, Kreft H, Weigelt P, Winter M, Kartesz J, Nishino M (2017) Naturalized alien flora of the world. Preslia 89:203–274CrossRefGoogle Scholar
  45. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 2 July 2018
  46. Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661CrossRefGoogle Scholar
  47. Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196:383–396CrossRefPubMedGoogle Scholar
  48. Richardson S, Walker L (2010) Nutrient ecology of ferns. In: Mehltreter K, Walker L, Sharpe J (eds) Fern ecology. Cambridge University Press, Cambridge, pp 111–139CrossRefGoogle Scholar
  49. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107CrossRefGoogle Scholar
  50. Richardson DM, Carruthers J, Hui C, Impson FA, Miller JT, Robertson MP, Rouget M, Le Roux JJ, Wilson JR (2011) Human-mediated introductions of Australian acacias—a global experiment in biogeography. Divers Distrib 17:771–787CrossRefGoogle Scholar
  51. Robinson R, Sheffield E, Sharpe J (2010) Problem ferns: their impact and management. In: Mehltreter K, Walker L, Sharpe J (eds) Fern ecology. Cambridge University Press, Cambridge, pp 255–322CrossRefGoogle Scholar
  52. Roux JP (2001) Conspectus of Southern African Pteridophyta: an enumeration of the Pteridophyta of Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa (including the Marion Island Group), Swaziland, Zambia and Zimbabwe. Southern African Botanical Diversity Network ReportGoogle Scholar
  53. Sato T, Sakai A (1981) Cold tolerance of gametophytes and sporophytes of some cold temperature ferns native to Hokkaido. Can J Bot 59:604–608CrossRefGoogle Scholar
  54. Sharpe JM, Mehltreter K, Walker LR (2010) Ecological importance of ferns. In: Mehltreter K, Walker L, Sharpe J (eds) Fern ecology. Cambridge University Press, Cambridge, pp 1–21Google Scholar
  55. Simberloff D (2009) The role of propagule pressure in biological invasions. Ann Rev Ecol Evol Syst 40:81–102CrossRefGoogle Scholar
  56. Smith J (1895) Ferns: British & foreign. Robert Hardwicke, LondonGoogle Scholar
  57. Sofiyanti N (2013) The diversity of epiphytic fern on the oil palm tree (Elaeis guineensis Jacq.) in Pekanbaru, Riau. Jurnal Biologi 17:51–55Google Scholar
  58. Stebbins GL (1957) Self fertilization and population variability in the higher plants. Am Nat 91:337–354CrossRefGoogle Scholar
  59. Tabachnick BG, Fidell LS (1996) Using multivariate statistics, 3rd edn. Harper Collins College Publishers, New YorkGoogle Scholar
  60. Takhtajan A (1986) Floristic regions of the world. University of California Press, Los AngelesGoogle Scholar
  61. Terzano D, Kotzé I, Marais C, Cianciullo S, Farcomeni A, Caroli P, Malatesta L, Attorre F (2018) Environmental and anthropogenic determinants of the spread of alien plant species: insights from South Africa’s quaternary catchments. Plant Ecol 219:277–297CrossRefGoogle Scholar
  62. The Plant List (2013) Version 1.1. Published on the Internet. http://www.theplantlist.org/. Accessed 30 July 2018
  63. van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245CrossRefPubMedGoogle Scholar
  64. van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cardenas D, Cardenas-Toro J, Castano N, Chacon E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Groom QJ, Henderson L, Inderjit, Kupriyanov A, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu W-S, Thomas J, Velayos M, Wieringa JJ, Pyšek P (2015) Global exchange and accumulation of non-native plants. Nature 525:100–103CrossRefPubMedGoogle Scholar
  65. van Kleunen M, Essl F, Pergl J, Brundu G, Carboni M, Dullinger S, Early R, González-Moreno P, Groom QJ, Hulme PE, Kueffer C (2018) The changing role of ornamental horticulture in alien plant invasions. Biol Rev 93:1421–1437CrossRefPubMedGoogle Scholar
  66. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York. ISBN 0-387-95457-0CrossRefGoogle Scholar
  67. Vernon AL, Ranker TA (2013) Current status of the ferns and lycophytes of the Hawaiian Islands. Am Fern J 103:59–111CrossRefGoogle Scholar
  68. Volin JC, Lott MS, Muss JD, Owen D (2004) Predicting rapid invasion of the Florida Everglades by Old World climbing fern (Lygodium microphyllum). Divers Distrib 10:439–446CrossRefGoogle Scholar
  69. Walker LR, Sharpe JM (2010) Ferns, disturbance and succession. In: Mehltreter K, Walker L, Sharpe J (eds) Fern ecology. Cambridge University Press, Cambridge, pp 177–219CrossRefGoogle Scholar
  70. Watkins JE Jr, Mack MC, Sinclair TR, Mulkey SS (2007) Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytol 176(3):708–717CrossRefPubMedGoogle Scholar
  71. Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77(6):1661–1666CrossRefGoogle Scholar
  72. Wilson KA (2002) Continued pteridophyte invasion of Hawaii. Am Fern J 92:179–183CrossRefGoogle Scholar
  73. Wilson JR, Richardson DM, Rouget M, Procheş Ş, Amis MA, Henderson L, Thuiller W (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22CrossRefGoogle Scholar
  74. Wolf PG, Pryer KM, Smith AR, Hasebe M (1998) Phylogenetic studies of extant pteridophytes. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II.  Kluwer, Boston, Massachusetts, USA, pp 541–556.Google Scholar
  75. Young L (1996) Success with indoor ferns. Merehurst Limited, LodonGoogle Scholar
  76. Zenni RD, Simberloff D (2013) Number of source populations as a potential driver of pine invasions in Brazil. Biol Invasions 15:1623–1639CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Natural Resource ManagementNelson Mandela UniversityGeorgeSouth Africa
  2. 2.Invasive Species ProgrammeSouth African National Biodiversity InstituteCape TownSouth Africa
  3. 3.CNRS, UCBL, UMR 5558Université LyonVilleurbanneFrance
  4. 4.Department of Invasion Ecology, Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic

Personalised recommendations