Use of simulation-based statistical models to complement bioclimatic models in predicting continental scale invasion risks

Abstract

Invasive species represent one of the greatest risks to global biodiversity and economic productivity of agroecosystems. The development of certain novel crops—e.g., herbaceous perennial biomass crops—may create a risk of novel invasions by these crops. Therefore, potential benefits and risks need to be weighed in making decisions about their introduction and subsequent management. Ideally, such a weighing will be based on good estimates of invasion risks in realistic scenarios pertaining to actual landscapes of concern. Most previous large-scale analyses of invasion risk have used species distribution models and their established methods. Unfortunately, these approaches are unable to incorporate local scale biotic and spatial factors that influence invasion risk. Here we present a case study for how such factors can be efficiently incorporated in large-scale analyses of invasion risk, by extending simulation models with statistical modeling tools. By these means, we predict invasion risk at the scale of the entire United States for a major biomass crop, Miscanthus × giganteus. We then combine invasion risk predictions for this method with those from bioclimatic methods, producing a map of aggregated invasion risk that can offer more nuanced predictions of invasion risk than either approach alone. Lastly, we evaluate potential risks for invasive crops that differ in invasiveness traits, to examine how geographic patterns of invasion risk vary among invaders as a result of their particular constellation of traits.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Barney JN, DiTomaso JM (2011) Global climate niche estimates for bioenergy crops and invasive species of agronomic origin: potential problems and opportunities. PLoS One 6:e17222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Barros C, Palmer SCF, Bocedi G, Travis JMJ (2016) Spread rates on fragmented landscapes: the interacting roles of demography, dispersal and habitat availability. Divers Distrib 22:1266–1275. https://doi.org/10.1111/ddi.12487

    Article  Google Scholar 

  3. Bradley BA, Mustard JF (2006) Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol Appl 16:1132–1147. https://doi.org/10.1890/1051-0761(2006)016%5b1132:CTLDOA%5d2.0.CO;2

    Article  PubMed  Google Scholar 

  4. Cardille J, Turner M, Clayton M et al (2005) Metaland: characterizing spatial patterns and statistical context of landscape metrics. Bioscience 55:983–988. https://doi.org/10.1641/0006-3568(2005)55%5b0983:MCSPAS%5d2.0.CO;2

    Article  Google Scholar 

  5. Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  6. Chen H-G, Zhang Y-HP (2015) New biorefineries and sustainable agriculture: increased food, biofuels, and ecosystem security. Renew Sustain Energy Rev 47:117–132. https://doi.org/10.1016/j.rser.2015.02.048

    Article  CAS  Google Scholar 

  7. Crespo-Pérez V, Rebaudo F, Silvain J-F, Dangles O (2011) Modeling invasive species spread in complex landscapes: the case of potato moth in Ecuador. Landsc Ecol 26:1447–1461. https://doi.org/10.1007/s10980-011-9649-4

    Article  Google Scholar 

  8. Davis MA (2003) Biotic globalization: does competition from introduced species threaten biodiversity? Bioscience 53:481–489. https://doi.org/10.1641/0006-3568(2003)053%5b0481:BGDCFI%5d2.0.CO;2

    Article  Google Scholar 

  9. de Fraiture C, Giordano M, Liao Y (2008) Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy 10:67–81

    Article  Google Scholar 

  10. Deckers B, Verheyen K, Hermy M, Muys B (2005) Effects of landscape structure on the invasive spread of black cherry Prunus serotina in an agricultural landscape in Flanders, Belgium. Ecography (Cop) 28:99–109. https://doi.org/10.1111/j.0906-7590.2005.04054.x

    Article  Google Scholar 

  11. Dougherty RF, Quinn LD, Endres AB et al (2014) Natural history survey of the ornamental grass miscanthus sinensis in the introduced range. Invasive Plant Sci Manag 7:113–120. https://doi.org/10.1614/IPSM-D-13-00037.1

    Article  Google Scholar 

  12. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Ann Rev Ecol Evol Syst 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  13. Epanchin-Niell RS, Wilen JE (2012) Optimal spatial control of biological invasions. J Environ Econ Manag 63:260–270. https://doi.org/10.1016/j.jeem.2011.10.003

    Article  Google Scholar 

  14. Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analog climate. Biodivers Conserv 18:2255. https://doi.org/10.1007/s10531-009-9584-8

    Article  Google Scholar 

  15. Franklin J (2010) Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib 16:321–330. https://doi.org/10.1111/j.1472-4642.2010.00641.x

    Article  Google Scholar 

  16. Fry J, Xian GZ, Jin S et al (2011) Completion of the 2006 national land cover database for the conterminous united states. Photogramm Eng Remote Sens 77:858–864

    Google Scholar 

  17. Gallien L, Münkemüller T, Albert CH et al (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distrib 16:331–342. https://doi.org/10.1111/j.1472-4642.2010.00652.x

    Article  Google Scholar 

  18. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  19. Havlík P, Schneider UA, Schmid E et al (2011) Global land-use implications of first and second generation biofuel targets. Energy Policy 39:5690–5702. https://doi.org/10.1016/j.enpol.2010.03.030

    Article  Google Scholar 

  20. Heaton EA, Dohleman FG, Miguez AF, et al (2010) Miscanthus: a promising biomass crop. In: Research J-CK, in Botanical MDBT-A (eds). Academic Press, New York, pp 75–137

  21. Higgins SI, Richardson DM, Cowling RM (1996) Modeling invasive plant spread: the role of plant-environment interactions and model structure. Ecology 77:2043–2054. https://doi.org/10.2307/2265699

    Article  Google Scholar 

  22. Hirzel AH, Le Lay G (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381. https://doi.org/10.1111/j.1365-2664.2008.01524.x

    Article  Google Scholar 

  23. Hooten MB, Hobbs NT (2014) A guide to Bayesian model selection for ecologists. Ecol Monogr 85:3–28. https://doi.org/10.1890/14-0661.1

    Article  Google Scholar 

  24. Jordan NR, Dorn K, Runck B et al (2016) Sustainable commercialization of new crops for the agricultural bioeconomy. Elem Sci Anthr 4:1–10. https://doi.org/10.12952/journal.elementa.000081

    Article  Google Scholar 

  25. Kissling WD, Dormann CF, Groeneveld J et al (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J Biogeogr 39:2163–2178. https://doi.org/10.1111/j.1365-2699.2011.02663.x

    Article  Google Scholar 

  26. Kriticos DJ, Sutherst RW, Brown JR et al (2003) Climate change and biotic invasions: a case history of a tropical woody vine. Biol Invasions 5:147–165. https://doi.org/10.1023/A:1026193424587

    Article  Google Scholar 

  27. Leung B, Roura-Pascual N, Bacher S et al (2012) TEASIng apart alien species risk assessments: a framework for best practices. Ecol Lett 15:1475–1493. https://doi.org/10.1111/ele.12003

    Article  PubMed  Google Scholar 

  28. Maron JL, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373. https://doi.org/10.1034/j.1600-0706.2001.950301.x

    Article  Google Scholar 

  29. McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps

  30. Merow C, LaFleur N, Silander JA Jr et al (2011) Developing dynamic mechanistic species distribution models: predicting bird-mediated spread of invasive plants across Northeastern North America. Am Nat 178:30–43. https://doi.org/10.1086/660295

    Article  PubMed  Google Scholar 

  31. Mishra U, Torn MS, Fingerman K (2013) Miscanthus biomass productivity within US croplands and its potential impact on soil organic carbon. GCB Bioenergy 5:391–399. https://doi.org/10.1111/j.1757-1707.2012.01201.x

    Article  CAS  Google Scholar 

  32. Muthukrishnan R, West NM, Davis AS et al (2015) Evaluating the role of landscape in the spread of invasive species: the case of the biomass crop Miscanthus × giganteus. Ecol Modell 317:6–15. https://doi.org/10.1016/j.ecolmodel.2015.08.022

    Article  Google Scholar 

  33. Muthukrishnan R, Davis AS, Jordan NR, Forester JD (2018a) Invasion complexity at large spatial scales is an emergent property of interactions among landscape characteristics and invader traits. PLoS One 13:e0195892. https://doi.org/10.1371/journal.pone.0195892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Muthukrishnan R, Davis AS, Jordan NR, Forester JD (2018b) Data from: use of simulation-based statistical models to complement bioclimatic models in predicting continental scale invasion risks. Dryad Digital Repos. https://doi.org/10.5061/dryad.ms768r4

    Article  Google Scholar 

  35. Nehrbass N, Winkler E, Müllerová J et al (2007) A simulation model of plant invasion: long-distance dispersal determines the pattern of spread. Biol Invasions 9:383–395. https://doi.org/10.1007/s10530-006-9040-6

    Article  Google Scholar 

  36. Pearson RG, Dawson TP (2005) Long-distance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climate change. Biol Conserv 123:389–401. https://doi.org/10.1016/j.biocon.2004.12.006

    Article  Google Scholar 

  37. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65

    Article  Google Scholar 

  38. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288. https://doi.org/10.1016/j.ecolecon.2004.10.002

    Article  Google Scholar 

  39. Pittman S, Muthukrishnan R, West N et al (2015) Mitigating the potential for invasive spread of the exotic biofuel crop, Miscanthus × giganteus. Biol Invasions 17:3247–3261. https://doi.org/10.1007/s10530-015-0950-z

    Article  Google Scholar 

  40. Quinn LD, Allen DJ, Stewart JR (2010) Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. Glob Change Biol Bioenergy 2:310–320

    Article  Google Scholar 

  41. Quinn LD, Matlaga DP, Stewart JR, Davis AS (2011) Empirical evidence of long-distance dispersal in Miscanthus sinensis and Miscanthus × giganteus. Invasive Plant Sci Manag 4:142–150. https://doi.org/10.1614/IPSM-D-10-00067.1

    Article  Google Scholar 

  42. Raghu S, Anderson RC, Daehler CC et al (2006) Adding biofuels to the invasive species fire? Science 80(313):1742

    Article  Google Scholar 

  43. Rejmanek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661. https://doi.org/10.2307/2265768

    Article  Google Scholar 

  44. Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724. https://doi.org/10.1086/379204

    Article  PubMed  Google Scholar 

  45. Rouget M, Richardson DM, Nel JL et al (2004) Mapping the potential ranges of major plant invaders in South Africa, Lesotho and Swaziland using climatic suitability. Divers Distrib 10:475–484. https://doi.org/10.1111/j.1366-9516.2004.00118.x

    Article  Google Scholar 

  46. Schulte LA, Niemi J, Helmers MJ et al (2017) Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc Natl Acad Sci 114:11247–11252

    Article  PubMed  CAS  Google Scholar 

  47. Simberloff D (2005) The politics of assessing risk for biological invasions: the USA as a case study. Trends Ecol Evol 20:216–222. https://doi.org/10.1016/j.tree.2005.02.008

    Article  PubMed  Google Scholar 

  48. Sutherst RW, Maywald GF (1985) A computerised system for matching climates in ecology. Agric Ecosyst Environ 13:281–299. https://doi.org/10.1016/0167-8809(85)90016-7

    Article  Google Scholar 

  49. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273. https://doi.org/10.1111/j.1469-8137.2007.02207.x

    Article  PubMed  Google Scholar 

  50. Thuiller W, Richardson DM, Pyšek P et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250. https://doi.org/10.1111/j.1365-2486.2005.001018.x

    Article  Google Scholar 

  51. Thuiller W, Richardson DM, Rouget M et al (2006) Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 87:1755–1769. https://doi.org/10.1890/0012-9658(2006)87%5b1755:IBESTA%5d2.0.CO;2

    Article  PubMed  Google Scholar 

  52. Williamson M (2006) Explaining and predicting the success of invading species at different stages of invasion. Biol Invasions 8:1561–1568. https://doi.org/10.1007/s10530-005-5849-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by USDA-NIFA Grant #2012-67013 to NRJ, ASD and JDF. We are grateful for computational resources from the University of Minnesota Supercomputing Institute. We thank Rob Venette and Umakant Mishra for assistance with the bioclimatic modeling.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranjan Muthukrishnan.

Data availability

Data availability

All data and models scripts are archived in the Dryad Data Repository. https://doi.org/10.5061/dryad.ms768r4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muthukrishnan, R., Jordan, N.R., Davis, A.S. et al. Use of simulation-based statistical models to complement bioclimatic models in predicting continental scale invasion risks. Biol Invasions 21, 847–859 (2019). https://doi.org/10.1007/s10530-018-1864-3

Download citation

Keywords

  • Invasion risk
  • Species distribution model
  • Hybrid model
  • Biofuel
  • Landscape
  • Spatial structure