Advertisement

Survival, dynamics of spread and invasive potential of species in perennial plantations

  • Josef KutlvašrEmail author
  • Jan Pergl
  • Adam Baroš
  • Petr Pyšek
Original Paper
  • 74 Downloads

Abstract

Ornamental plants represent an important source of alien and potentially invasive taxa. They are grown in a broad range of habitats such as home gardens, public spaces, belts along roads, floriculture plantations and specialized garden collections. Recently so-called “mixed perennial beds” are becoming increasingly popular as they need less maintenance compared to traditional plantings. Old perennial plantations with known initial composition, monitored for a long period of time, can provide useful insights into the naturalization and invasive potential of individual species. We studied survival and spread of ornamental plants by using data from flower beds established in 2006–2010, and resampled in 2016, and related these dynamics to the traits of the taxa (height, SLA, reproduction), taking into account their phylogenetic relationships. The height of plants and generative reproduction had a positive effect on survival. Taxa taller than 1 m and with massive and regular generative reproduction survived best. In the majority of beds, one to three taxa increased their abundance at the expense of others. These dominants were mainly alien such as Aquilegia sp., Aster dumosus, Knautia macedonica and Silene coronaria, that were also able to spread into neighbouring flower beds where they have not been originally planted.

Keywords

Functional traits Long-term monitoring Naturalization Non-native species Ornamental plants Plant height 

Notes

Acknowledgements

We thank Karel Boublík for his useful comments. Petra Crkalová is acknowledged for her help with data collection. The study was supported by the grant Biotic threats to monuments of garden art: algae, cyanobacteria and invasive plants (DG16P02M041; NAKI II of the Ministry of Culture of the Czech Republic).

Supplementary material

10530_2018_1847_MOESM1_ESM.pdf (2.5 mb)
Supplementary material 1 (PDF 2538 kb)

References

  1. Baldock KCR, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, Stone GN, Vaughan IP, Memmott J (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc R Soc B 282:1–10.  https://doi.org/10.1098/rspb.2014.2849 CrossRefGoogle Scholar
  2. Baroš A (2011) Pokusné trvalkové záhony. Dendrologická zahrada VÚKOZ v. v. i. http://dendrologickazahrada.cz/vyzkumne-aktivity/pokusne-trvalkove-zahony. Accessed 10 Jan 2018
  3. Baroš A (2014) Sborník projektu Štěrkové záhony. Česká zahradnická akademie Mělník, MělníkGoogle Scholar
  4. Baroš A, Martinek J (2011) Trvalkové výsadby s vyšším stupněm autoregulace a extenzivní údržbou. VÚKOZ v. v. i, PrůhoniceGoogle Scholar
  5. Botham MS, Rothery P, Hulme PE, Hill MO, Preston CD, Roy DB (2009) Do urban areas act as foci for the spread of alien plant species? An assessment of temporal trends in the UK. Divers Distrib 15:338–345.  https://doi.org/10.1111/j.1472-4642.2008.00539.x CrossRefGoogle Scholar
  6. Braun-Blanquet J (1921) Prinzipien einer Systematik der Pflanzengesellschaften auf floristischer Grundlage. Jahrbuch der St. Gallischen Naturwissenschaftlichen Gesellschaft für das Vereinsjahr 57:305–351Google Scholar
  7. Braun-Blanquet J (1951) Pflanzensoziologie: Grundzüge der Vegetationskunde. Springer, WienCrossRefGoogle Scholar
  8. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, BelmontGoogle Scholar
  9. Burnham PB, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  10. Castro-Díez P, Langendoen T, Poorter L, Saldana-López A (2011) Predicting Acacia invasive success in South Africa on the basis of functional traits, native climatic niche and human use. Biodivers Conserv 20:2729–2743.  https://doi.org/10.1007/s10531-011-0101-5 CrossRefGoogle Scholar
  11. Chytrý M, Pyšek P (2008) Invaze nepůvodních druhů v rostlinných společenstvech. Zprávy České Botanické Společnosti 43:17–40Google Scholar
  12. Chytrý M, Maskell LC, Pino J, Pyšek P, Vila M, Font X, Smart SM (2008) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458.  https://doi.org/10.1111/j.1365-2664.2007.01398.x CrossRefGoogle Scholar
  13. Crawley JM (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  14. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192.  https://doi.org/10.1890/0012-9658(2000)081%5b3178:CARTAP%5d2.0.CO;2 CrossRefGoogle Scholar
  15. Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007) The horticultural trade and ornamental plant invasions in Britain. Conserv Biol 21:224–231.  https://doi.org/10.1111/j.1523-1739.2006.00538.x CrossRefPubMedGoogle Scholar
  16. Durka W, Michalski SG (2012) Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93:2297.  https://doi.org/10.1890/12-0743.1 CrossRefGoogle Scholar
  17. Forman TT (2016) Urban ecology principles: are urban ecology and natural area ecology really different? Landsc Ecol 31:1653–1662.  https://doi.org/10.1007/s10980-016-0424-4 CrossRefGoogle Scholar
  18. Gaertner M, Wilson JRU, Cadotte MW, MacIvor JS, Zenni RD, Richardson DM (2017) Non-native species in urban environments: patterns, processes, impacts and challenges. Biol Invasions 19:3461–3469.  https://doi.org/10.1007/s10530-017-1598-7 CrossRefGoogle Scholar
  19. Gaston JK, Philip H, Thompson KH, Smith MR (2005) Urban domestic gardens: the extent of the resource and its associated features. Biodivers Conserv 14:3327–3349.  https://doi.org/10.1007/s10531-004-0513-6 CrossRefGoogle Scholar
  20. Gaston KJ, Fuller AR, Loram A, MacDonald Ch, Power P, Dempse N (2007) Urban domestic gardens: variation in urban wildlife gardening in the United Kingdom. Biodivers Conserv 16:3227–3238.  https://doi.org/10.1007/s10531-007-9174-6 CrossRefGoogle Scholar
  21. Groening G, Wolschke-Bulmahn J (1989) Changes in the philosophy of garden architecture in the 20th century and their impact upon the social and spatial environment. J Gard Hist 9:53–70.  https://doi.org/10.1080/01445170.1989.10408267 CrossRefGoogle Scholar
  22. Grotkopp E, Rejmánek M, Rost TL (2002) Towards a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. Am Nat 159:396–419.  https://doi.org/10.1086/338995 CrossRefPubMedGoogle Scholar
  23. Gurevitch J, Fox AG, Wardle MG, Inderjit Taub D (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14:407–418.  https://doi.org/10.1111/j.1461-0248.2011.01594.x CrossRefPubMedGoogle Scholar
  24. Hitchmough J, de la Fleur Marcus, Findlay Catherine (2004) Establishing North American prairie vegetation in urban parks in northern England: part 1. Effect of sowing season, sowing rate and soil type. Landsc Urban Plan 66:75–90.  https://doi.org/10.1016/S0169-2046(03)00096-3 CrossRefGoogle Scholar
  25. Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pyšek P, Roques A, Sol D, Solarz W, Vila M (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414.  https://doi.org/10.1111/j.1365-2664.2007.01442.x CrossRefGoogle Scholar
  26. Hulme PE, Brundu G, Carboni M, Dehnen-Schmutz K, Dullinger S, Early R, Essl F, González-Moreno P, Groom QJ, Kueffer Ch, Kühn I, Maurel N, Novoa A, Pergl J, Pyšek P, Seebens H, Tanner R, Touza JM, van Kleunen M, Verbrugge LNH, Flory L (2017) Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. J Appl Ecol 55:92–98.  https://doi.org/10.1111/1365-2664.12953 CrossRefGoogle Scholar
  27. Jehlík V (2013) Die vegetation und Flora der Flusshäfen Mitteleuropas. Academia, PrahaGoogle Scholar
  28. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204.  https://doi.org/10.1016/S0169-5347(01)02101-2 CrossRefPubMedGoogle Scholar
  29. Köppler RM, Kowarik I, Kühn N, von der Lippe M (2014) Enhancing wasteland vegetation by adding ornamentals: opportunities and constraints for estabilishing steppe and prairie species on urban demolition sites. Landsc Urban Plan 126:1–9CrossRefGoogle Scholar
  30. Kovanda M, Kubát K (2004) Aster L., hvězdnice. In: Slavík B, Chrtek J, Štěpánková J (eds) Květena ČR 7. Academia, Praha, pp 125–140Google Scholar
  31. Kowarik I (1990) Some response of flora and vegetation to urbanization in central Europe. In: Sukopp H, Hejný S, Kowarik I (eds) Urban ecology: plants and plant communities in the urban environment. SPB Academic Publishing, Tintern, pp 45–75.  https://doi.org/10.1016/j.landurbplan.2014.03.001 CrossRefGoogle Scholar
  32. Kowarik I (2005) Urban ornamentals escaped from cultivation. In: Gressel J (ed) Crop ferality and volunteerism: a threat to food security in the transgenic era? CRC Press, Boca Raton, pp 97–121CrossRefGoogle Scholar
  33. Křivánek M, Pyšek P, Jarošík V (2006) Planting history and propagule pressure as predictors of invasions by woody species in a temperate region. Conserv Biol 20:1487–1498.  https://doi.org/10.1111/j.1523-1739.2006.00477.x CrossRefPubMedGoogle Scholar
  34. Küster EC, Durka W, Kühn I, Klotz S (2010) Differences in the trait composition of non-indigenous and native plants across Germany. Biol Invasions 12:2001–2012.  https://doi.org/10.1007/s10530-009-9603-4 CrossRefGoogle Scholar
  35. Küster EC, Kühn I, Bruelheide H, Klotz S (2008) Trait interactions help explain plant invasion success in the German flora. J Ecol 96:860–868.  https://doi.org/10.1111/j.1365-2745.2008.01406.x CrossRefGoogle Scholar
  36. Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M, Essl F, Jarošík V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, Brundu G, Celesti-Grapow L, Chassot P, Delipetrou P, Josefsson M, Kark S, Klotz S, Kokkoris Y, Kühn I, Marchante H, Perglová I, Pino J, Vila M, Zikos A, Roy D, Hulme PE (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149Google Scholar
  37. LI-COR Inc (2016) Leaf area meters for applications including agronomy, botany, ecology, entomology, horticulture and plant physiology. LI-COR Inc, LincolnGoogle Scholar
  38. Lindemann-Matthies P, Marty T (2013) Does ecological gardening increase species richness and aesthetic quality of a garden? Biol Conserv 159:37–44.  https://doi.org/10.1016/j.biocon.2012.12.011 CrossRefGoogle Scholar
  39. Lloret F, Médail F, Brundu G, Hulme PE (2004) Local and regional abundance of exotic plant species on Mediterranean islands: are species traits important? Glob Ecol Biogeogr 13:37–45.  https://doi.org/10.1111/j.1466-882X.2004.00064.x CrossRefGoogle Scholar
  40. Lososová Z, Chytrý M, Tichý L, Danihelka J, Fajmon K, Hájek O, Kintrová K, Láníková D, Otýpková Z, Řehořek V (2012) Biotic homogenization of Central European urban floras depends on residence time of alien species and habitat types. Biol Conserv 145:179–184.  https://doi.org/10.1016/j.biocon.2011.11.003 CrossRefGoogle Scholar
  41. Mack RN (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol Invasions 2:111–122.  https://doi.org/10.1023/A:1010088422771 CrossRefGoogle Scholar
  42. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710.  https://doi.org/10.1890/1051-0761(2000)010%5b0689:BICEGC%5d2.0.CO;2 CrossRefGoogle Scholar
  43. Meiners SJ, Pickett STA, Cadenasso ML (2002) Exotic plant invasions over 40 years of old field succession: community patterns and associations. Ecography 25:215–223.  https://doi.org/10.1034/j.1600-0587.2002.250209.x CrossRefGoogle Scholar
  44. Moravcová L, Pyšek P, Jarošík V, Havlíčková V, Zákravský P (2010) Reproductive characteristics of neophytes in the Czech Republic: traits of invasive and non-invasive species. Preslia 82:365–390Google Scholar
  45. Moravcová L, Pyšek P, Jarošík V, Pergl J (2015) Getting the right traits: reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species. PLoS ONE 10:1–16.  https://doi.org/10.1371/journal.pone.0123634 CrossRefGoogle Scholar
  46. Oksanen J (2015) Multivariiete analysis of ecological communities in R: vegan tutorial. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 15 Jan 2018
  47. Orme CDL (2012) The caper package: comparative analyses in phylogenetics and evolution in R. http://caper.r-forge.r-project.org/. Accessed 15 Jan 2018
  48. Paradis E, Claude J, Strimmer K (2004) APE analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefGoogle Scholar
  49. Pergl J, Perglová I, Pyšek P, Dietz H (2006) Population age structure and reproductive behavior of the monocarpic perennial Heracleum mantegazzianum (Apiaceae) in its native and invaded distribution ranges. Am J Bot 93:1018–1028.  https://doi.org/10.3732/ajb.93.7.1018 CrossRefPubMedGoogle Scholar
  50. Pergl J, Sádlo J, Petřík P, Danihelka J, Chrtek J, Hejda M, Moravcová L, Perglová I, Štajerová K, Pyšek P (2016) Dark side of the fence: ornamental plants as a source of wild-growing flora in the Czech Republic. Preslia 88:163–184Google Scholar
  51. Pergl J, Pyšek P, Bacher S, Essl F, Genovesi P, Harrower CA, Hulme PE, Jeschke JM, Kenis M, Kühn I, Perglová I, Rabitsch W, Roques A, Roy DB, Roy HE, Vila M, Winter M, Nentwig W (2017) Troubling travellers: are ecologically harmful alien species associated with particular introduction pathways? NeoBiota 32:1–20.  https://doi.org/10.3897/neobiota.32.10199 CrossRefGoogle Scholar
  52. Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manage 57:239–251.  https://doi.org/10.1006/jema.1999.0297 CrossRefGoogle Scholar
  53. Prach K, Pyšek P, Jarošík V (2007) Climate and pH as determinants of vegetation succession in Central-European man-made habitats. J Veg Sci 18:701–710.  https://doi.org/10.1111/j.1654-1103.2007.tb02584.x CrossRefGoogle Scholar
  54. Prach K, Jirová A, Doležal J (2014a) Pattern of succession in old-field vegetation at a regional scale. Preslia 86:119–130Google Scholar
  55. Prach K, Řehounková K, Lencová K, Jírová A, Konvalinková P, Mudrák O, Študent V, Vaněček Z, Tichý L, Petřík P, Šmilauer P, Pyšek P (2014b) Vegetation succession in restoration of disturbed sites in Central Europe: the direction of succession and species richness across 19 seres. Appl Veg Sci 17:193–200.  https://doi.org/10.1111/avsc.12064 CrossRefGoogle Scholar
  56. Prach K, Tichý L, Vítovcová K, Řehounková K (2017) Participation of the Czech flora in succession at disturbed sites: quantifying species’ colonization ability. Preslia 89:87–100CrossRefGoogle Scholar
  57. Pyšek P (1992) Dominant species exchange during succession in reclaimed habitats: a case study from areas deforested by air pollution. For Ecol Manage 54:27–44.  https://doi.org/10.1016/0378-1127(92)90003-R CrossRefGoogle Scholar
  58. Pyšek P, Chytrý M (2014) Habitat invasion research: where vegetation science and invasion ecology meet. J Veg Sci 25:1181–1187.  https://doi.org/10.1111/jvs.12146 CrossRefGoogle Scholar
  59. Pyšek P, Jarošík V (2005) Residence time determines the distribution of alien plants. In: Inderjit S (ed) Invasive plants: ecological and agricultural aspects. Birkhäuser Verlag-AG, Basel, pp 77–96CrossRefGoogle Scholar
  60. Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions. Springer, New York, pp 97–125CrossRefGoogle Scholar
  61. Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55.  https://doi.org/10.1146/annurev-environ-033009-095548 CrossRefGoogle Scholar
  62. Pyšek P, Jarošík V, Pergl J, Randall R, Chytrý M, Kühn I, Tichý L, Danihelka J, Chrtek J, Sádlo J (2009a) The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers Distrib 15:891–903.  https://doi.org/10.1111/j.1472-4642.2009.00602.x CrossRefGoogle Scholar
  63. Pyšek P, Křivánek M, Jarošík V (2009b) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90:2734–2744CrossRefGoogle Scholar
  64. Pyšek P, Jarošík V, Pergl J (2011) Alien plants introduced by different pathways differ in invasion success: unintentional introductions as greater threat to natural areas? PLoS ONE 6:1–6.  https://doi.org/10.1371/journal.pone.0024890 CrossRefGoogle Scholar
  65. Pyšek P, Danihelka J, Sádlo J, Chrtek J, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Štajerová K, Tichý L (2012) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–256Google Scholar
  66. Pyšek P, Manceur MA, Alba Ch, McGregor FK, Pergl J, Štajerová K, Chytrý M, Danihelka J, Kartesz J, Klimešová J, Lučanová M, Moravcová L, Nishino M, Sádlo J, Suda J, Tichý L, Kühn I (2015) Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96:762–774.  https://doi.org/10.1890/14-1005.1 CrossRefPubMedGoogle Scholar
  67. R Development Core Team (2014) R: a language and environment for statistical computing. In: R foundation for statistical computing. R Development Core Team, Vienna, Austria. https://cran.r-project.org/. Accessed 13 Nov 2017
  68. Razanajatovo M, Fohr C, Fischer M, Prati D, van Kleunen M (2015) Non-naturalized alien plants receive fewer flower visits than naturalized and native plants in a Swiss botanical garden. Biol Conserv 182:109–116.  https://doi.org/10.1016/j.biocon.2014.11.043 CrossRefGoogle Scholar
  69. Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51:103–113.  https://doi.org/10.1641/0006-3568(2001)051%5b0103:HAAPOI%5d2.0.CO;2 CrossRefGoogle Scholar
  70. Rejmánek M (1989) Invasibility of plant communities. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 369–388Google Scholar
  71. Rejmánek M, Richardson MD (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661.  https://doi.org/10.2307/2265768 CrossRefGoogle Scholar
  72. Rivas-Martínez S, Penas Á, Díaz TE (2004) Bioclimatic map of Europe. Bioclimates. University of León, LeónGoogle Scholar
  73. Rouget M, Richardson MD (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724.  https://doi.org/10.1086/379204 CrossRefPubMedGoogle Scholar
  74. Schantz MC, Sheley RL, James JJ (2018) Effects of propagule pressure and priority effects on seedling recruitment during restoration of invaded grassland. J Arid Environ 150:62–70.  https://doi.org/10.1016/j.jaridenv.2017.12.001 CrossRefGoogle Scholar
  75. Schmidt PJ, Drake MJ (2011) Time since introduction, seed mass, and genome size predict successful invaders among the cultivated vascular plants of Hawaii. PLoS ONE 6:1–7.  https://doi.org/10.1371/journal.pone.0017391 CrossRefGoogle Scholar
  76. Seebens Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435.  https://doi.org/10.1038/ncomms14435 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Shwartz A, Turbé A, Simon A, Julliard R (2014) Enhancing urban biodiversity and its influence on city-dwellers: an experiment. Biol Conserv 171:82–90.  https://doi.org/10.1016/j.biocon.2014.01.009 CrossRefGoogle Scholar
  78. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102.  https://doi.org/10.1146/annurev.ecolsys.110308.120304 CrossRefGoogle Scholar
  79. Steinberg D, Colla P (1995) CART: tree-structured non-parametric data analysis. Salford Systems, San DiegoGoogle Scholar
  80. Strayer LD (2012) Eight question about invasions ecosystem functioning. Ecol Lett 15:1199–1210.  https://doi.org/10.1111/j.1461-0248.2012.01817.x CrossRefPubMedGoogle Scholar
  81. Sukopp H (2002) On the early history of urban ecology in Europe. Preslia 74:373–393Google Scholar
  82. ter Braak CJ, Šmilauer P (2012a) CANOCO reference manual and user’s guide to Canoco for windows—software for canonical community ordination (version 5). Centre for Biometry, WageningenGoogle Scholar
  83. ter Braak CJ, Šmilauer P (2012b) Canoco 5: software for multivariate data exploration, testing and summarization. http://canoco5.com/
  84. The Plant List (2018) The plant list, version 1.1. http://www.theplantlist.org. Accessed 25 Aug 2018
  85. Thuiller W, Richardson MD, Rouget M, Procheş S, Wilson RJ (2006) Interactions between environment, species traits and human uses describe patterns of plant invasion. Ecology 87:1755–1769.  https://doi.org/10.1890/0012-9658(2006)87%5b1755:IBESTA%5d2.0.CO;2 CrossRefPubMedGoogle Scholar
  86. Tolasz R, Míková T, Valeriánová A, Voženílek V (eds) (2007) Atlas podnebí Česka [Climate atlas of Czechia]. Český hydrometeorologický ústav, Praha and Univerzita Palackého v Olomouci, OlomoucGoogle Scholar
  87. van Kleunen M, Dawson W, Schlaepfer D, Jeschke MJ, Fischer M (2010a) Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol Lett 13:947–958.  https://doi.org/10.1111/j.1461-0248.2010.01503.x CrossRefPubMedGoogle Scholar
  88. van Kleunen M, Weber E, Fischer M (2010b) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245.  https://doi.org/10.1111/j.1461-0248.2009.01418.x CrossRefPubMedGoogle Scholar
  89. van Kleunen M, Essl F, Pergl J, Brundu G, Carboni M, Dullinger S, Early R, González-Moreno P, Groom Q, Hulme P, Kueffer Ch, Kühn I, Máguas C, Maurel N, Novoa A, Parepa M, Pyšek P, Verbrugge L, Weber E, Dawson W, Kreft H, Weigelt P, Winter M, Klonner G, Talluto M, Dehnen-Schmutz K (2018) The changing role of ornamental horticulture in plant invasions. Biol Rev 93:1421–1437.  https://doi.org/10.1111/brv.12402 CrossRefPubMedGoogle Scholar
  90. Wijnands J (2005) Sustainable international networks in the flower industry: bridging empirical findings and theoretical approaches. International Society for Horticultural Science, LeuvenGoogle Scholar
  91. Wilson RJ, Richardson MD, Rouget M, Procheş S, Amis AM, Henderson L, Thuiller W (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22.  https://doi.org/10.1111/j.1366-9516.2006.00302.x CrossRefGoogle Scholar
  92. Xia Y, Deng X, Zhou P, Shima K, da Silva JAT (2006) The world floriculture industry: dynamics of production and markets. In: da Silva JAT (ed) Floriculture, ornamental and plant biotechnology, vol 4, pp 336–347Google Scholar
  93. Yang J, La Sorte FA, Pyšek P, Yan P, Nowak D, McBride J (2015) The compositional similarity of urban forests among the world’s cities is scale dependent. Glob Ecol Biogeogr 24:1413–1423.  https://doi.org/10.1111/geb.12376 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Invasion Ecology, Institute of BotanyThe Czech Academy of SciencesPrůhoniceCzech Republic
  2. 2.Department of Ecology, Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague 6 – SuchdolCzech Republic
  3. 3.Department of Cultural Landscape and SitesSilva Tarouca Research Institute for Landscape and Ornamental GardeningPrůhoniceCzech Republic
  4. 4.Department of Ecology, Faculty of ScienceCharles UniversityPrague 2Czech Republic

Personalised recommendations