Biological Invasions

, Volume 21, Issue 1, pp 85–98 | Cite as

Introduced European smelt (Osmerus eperlanus) affects food web and fish community in a large Norwegian lake

  • Antti P. ElorantaEmail author
  • Stein I. Johnsen
  • Michael Power
  • Kim M. Bærum
  • Odd Terje Sandlund
  • Anders G. Finstad
  • Sigurd Rognerud
  • Jon Museth
Original Paper


Invasive and introduced fishes can affect recipient ecosystems and native species via altered competitive and predatory interactions, potentially leading to top-down and bottom-up cascading impacts. Here, we describe a case from a large lake in southern Norway, Storsjøen, where the illegal introduction of a small, predominantly planktivorous fish species, European smelt (Osmerus eperlanus), has led to changes in the native fish community and lake food web. Survey fishing data collected before (2007) and after (2016) the introduction indicates that smelt has become the numerically dominant fish species both in benthic and pelagic habitats, with concurrent reductions in the relative abundance of native European whitefish (Coregonus lavaretus) and Arctic charr (Salvelinus alpinus) populations. Stable isotope (δ13C and δ15N) data indicate minor changes in the trophic niches of native whitefish and Arctic charr despite partly overlapping niches with the introduced smelt. In contrast, brown trout (Salmo trutta) showed an earlier shift to piscivory, a more pelagic niche and increased growth rate, likely because of the smelt induced increase in pelagic prey fish abundance. The main trophic pathway supporting top predators (i.e., large brown trout) in Storsjøen has, therefore, shifted from a littoral to a more pelagic base. Our study demonstrates that small-sized introduced fishes can alter lake food-web dynamics, with contrasting impacts on native fishes. This knowledge is vital for future evaluation and mitigation of potential impacts of smelt introductions on lake ecosystems.


Alien species Energy flow pathways Lake food web Predatory fish Resource competition Stable isotope analysis 



We thank two anonymous reviewers for their constructive comments on an earlier draft of the manuscript. We thank Ole Nashoug, Frode Næstad, Jon Magerøy, and John Gunnar Dokk for assistance in the field and laboratory. The study was supported by funding from the hydropower company Glommens og Laagens Brukseierforening (GLB), the municipality of Rendalen, the Storsjøen Fishery Association (Storsjøen Fiskeforening), and the Research Council of Norway (Grant#: 243910).

Supplementary material

10530_2018_1806_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)
10530_2018_1806_MOESM2_ESM.docx (382 kb)
Supplementary material 2 (DOCX 381 kb)


  1. Amundsen P-A, Siwertsson A, Primicerio R, Bøhn T (2008) Long-term responses of zooplankton to invasion by a planktivorous fish in a subarctic watercourse. Freshw Biol 54:24–34CrossRefGoogle Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  3. Appelberg M, Berger HM, Hesthagen T, Kleiven E, Kurkilahti M, Raitaniemi J, Rask M (1995) Development and intercalibration of methods in Nordic freshwater fish monitoring. Water Air Soil Pollut 85:401–406CrossRefGoogle Scholar
  4. Bartoń K (2018) MuMIn: Multi-Model Inference. R package version 1.40.4.
  5. Bearhop S, Adams CE, Waldron S, Fuller RA, Macleod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012CrossRefGoogle Scholar
  6. Beisner BE, Ives AR, Carpenter SR (2003) The effects of an exotic fish invasion on the prey communities of two lakes. J Anim Ecol 72:331–342CrossRefGoogle Scholar
  7. Bhat S, Amundsen P-A, Knudsen R, Gjelland KØ, Fevolden S-E, Bernatchez L, Præbel K (2014) Speciation reversal in European whitefish (Coregonus lavaretus (L.)) caused by competitor invasion. PLoS ONE 9:e91208CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Ann Rev Ecol Syst 42:411–440CrossRefGoogle Scholar
  9. Bøhn T, Amundsen P-A, Sparrow A (2008) Competitive exclusion after invasion? Biol Invasions 10:359–368CrossRefGoogle Scholar
  10. Cucherousset J, Bouletreau S, Martino A, Roussel J-L, Santoul F (2012) Using stable isotope analyses to determine the ecological effects on non-native fishes. Fish Manag Ecol 19:111–119CrossRefGoogle Scholar
  11. Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182CrossRefGoogle Scholar
  12. Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, Gonzalez P, Grosholz ED, Ibañes I, Miller LP, Sorte CJB, Tatem AJ (2016) Global threats from invasive alien species in the twenty-first century and national response capacities. Nat Commun 7:12485CrossRefPubMedPubMedCentralGoogle Scholar
  13. Eloranta AP, Siwertsson A, Knudsen R, Amundsen P-A (2011) Dietary plasticity of Arctic charr (Salvelinus alpinus) facilitates coexistence with competitively superior European whitefish (Coregonus lavaretus). Ecol Freshw Fish 20:558–568CrossRefGoogle Scholar
  14. Eloranta AP, Knudsen R, Amundsen P-A (2013) Niche segregation of coexisting Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) constrains food web coupling in subarctic lakes. Freshw Biol 58:207–221CrossRefGoogle Scholar
  15. Eloranta AP, Kahilainen KK, Amundsen P-A, Knudsen R, Harrod C, Jones RI (2015) Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Ecol Evol 5:1664–1675CrossRefPubMedPubMedCentralGoogle Scholar
  16. Eloranta AP, Sánchez-Hernández J, Amundsen P-A, Skoglund S, Brush JM, Henriksen EH, Power M (2016) Water level regulation affects niche use of a lake top predator, Arctic charr (Salvelinus alpinus). Ecohydrology 10:e1766CrossRefGoogle Scholar
  17. Gaeta JW, Hrabik TR, Sass GG, Roth BM, Gilbert SJ, Vander Zanden MJ (2015) A whole-lake experiment to control invasive rainbow smelt (Actinoperygii, Osmeridae) via overharvest and a food web manipulation. Hydrobiologia 746:433–444CrossRefGoogle Scholar
  18. Gorman OT (2007) Changes in a population of exotic rainbow smelt in Lake Superior: boom to bust, 1974–2005. J Great Lakes Res 33:75–90CrossRefGoogle Scholar
  19. Graham CT, Harrod C (2009) Implications of climate change for the fishes of the British Isles. J Fish Biol 74:1143–1205CrossRefPubMedGoogle Scholar
  20. Hagelund M, Østbye K, Langland K, Hassve M, Pettersen RA, Anderson E, Gregersen F, Præbel K (2015) Fauna crime: elucidating the potential source and introduction history of European smelt (Osmerus eperlanus L.) into Lake Storsjøen, Norway. Conserv Genet 16:1085–1098CrossRefGoogle Scholar
  21. Hammar J, Axenrot T, Degerman E, Asp A, Bergstrand E, Enderlein O (2018) Smelt (Osmerus eperlanus): glacial relict, planktivore, predator, competitor, and key prey for the endangered Arctic char in Lake Vättern, southern Sweden. J Great Lakes Res 44:126–139CrossRefGoogle Scholar
  22. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:1–9Google Scholar
  23. Harrison PM, Gutowsky LFG, Martins EG, Ward TD, Patterson DA, Cooke SJ, Power M (2017) Individual isotopic specialisations predict subsequent inter-individual variation in movement in a freshwater fish. Ecology 98:608–615CrossRefPubMedGoogle Scholar
  24. He X, LaBar GW (1994) Interactive effects of cannibalism, recruitment, and predation on rainbow smelt in Lake Champlain: a modelling synthesis. J Great Lakes Res 20:289–298CrossRefGoogle Scholar
  25. Hirsch PE, Eloranta AP, Amundsen P-A, Brabrand Å, Charmasson J, Helland IP, Power M, Sánchez-Hernández J, Sandlund OT, Sauterleute JF, Skoglund S, Ugedal O, Yang H (2017) Effects of water level regulation in alpine hydropower reservoirs: an ecosystem perspective with a special emphasis on fish. Hydrobiologia 794:287–301CrossRefGoogle Scholar
  26. Hrabik TR, Magnuson JJ, McLain AS (1998) Predicting the effects of rainbow smelt on native fishes in small lakes: evidence from long-term research on two lakes. Can J Fish Aquat Sci 55:1364–1371CrossRefGoogle Scholar
  27. Jensen KW (1977) On the dynamics and exploitation of the population of brown trout, Salmo trutta, L., in Lake Øvre Heimdalsvatn, Southern Norway. Rep Inst Freshw Res Drottningholm 56:18–69Google Scholar
  28. Jeppesen E, Meerhoff M, Holmgren K, Gonzalez-Bergonzoni I, Teixeira-de Mello F, Declerck SAJ, De Meester L, Søndergaard M, Lauridsen T, Bjerring R, Conde-Porcuna JM, Mazzeo N, Iglesias C, Reizenstein M, Malmquist HJ, Liu Z, Balayla D, Lazzaro X (2010) Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646:73–90CrossRefGoogle Scholar
  29. Johnsen BM, Goettl JP (1999) Food web changes over fourteen years following introduction of rainbow smelt into a Colorado reservoir. N Am J Fish Manag 19:629–642CrossRefGoogle Scholar
  30. Jones MS, Goettl JP, Flickinger SA (1994) Changes in walleye food habits and growth following a rainbow smelt introduction. N Am J Fish Manag 14:409–414CrossRefGoogle Scholar
  31. Keskinen T, Lilja J, Högmander P, Holmes JA, Karjalainen J, Marjomäki TJ (2012) Collapse and recovery of the European smelt (Osmerus eperlanus) population in a small boreal lake—an early warning of the consequences of climate change. Boreal Environ Res 17:398–410Google Scholar
  32. Korlyakov KA, Mukhachev IS (2009) On the European smelt Osmerus eperlanus introduced to Bolshoi Kisegach Lake in the South Urals. J Ichthyol 49:668–673CrossRefGoogle Scholar
  33. Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotope to examine food-web structure: an overview of analytical tools. Biol Rev 87:532–545CrossRefGoogle Scholar
  34. McMeans BC, McCann KS, Tunney TD, Fisk AT, Muir AM, Lester N, Shuter B, Rooney N (2016) The adaptive capacity of lake food webs: from individuals to ecosystems. Ecol Monogr 86:4–19CrossRefGoogle Scholar
  35. Mercado-Silva N, Olden JP, Maxted JT, Hrabik TR, Vander Zanden MJ (2006) Forecasting the spread of invasive rainbow smelt in the Laurentian Great Lakes region of North America. Conserv Biol 20:1740–1749CrossRefPubMedGoogle Scholar
  36. Mercado-Silva N, Sass GG, Roth BM, Gilbert S, Vander Zanden MJ (2007) Impact of rainbow smelt (Osmerus mordax) invasion on walley (Sander vitreus) recruitment in Wisconsin lakes. Can J Fish Aquat Sci 64:1543–1550CrossRefGoogle Scholar
  37. Nyberg P, Bergstrand E, Degerman E, Enderlein O (2001) Recruitment of pelagic fish in an unstable climate: studies in Sweden’s four largest lakes. Ambio 30:559–564CrossRefPubMedGoogle Scholar
  38. Parnell A, Jackson A (2013) siar: Stable Isotope Analysis in R. R package version 4.2.
  39. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pejchar L, Mooney AH (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24:497–504CrossRefGoogle Scholar
  41. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  42. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Rahel FJ (2002) Homogenization of freshwater faunas. Annu Rev Ecol Syst 33:291–315CrossRefGoogle Scholar
  44. Rooney RC, Paterson MJ (2009) Ecosystem effects of rainbow smelt (Osmerus mordax) invasions in inland lakes: a literature review. Can Tech Rep Fish Aquat Sci 2845: iv + 33pGoogle Scholar
  45. Rush SA, Paterson G, Johnson TB, Drouillard KG, Haffner GD, Hebert CE, Arts MT, McGoldrick DJ, Backus SM, Lantry BF, Schaner T, Fisk AT (2012) Long-term impacts on invasive species on a native top predator in a large lake system. Freshw Biol 57:2342–2355CrossRefGoogle Scholar
  46. Sandlund OT, Næsje TF, Klyve L, Lindem T (1985a) The vertical distribution of fish species in Lake Mjøsa, Norway, as shown by gill net catches and echo sounder. Rep Inst Freshw Res Drottningholm 62:136–149Google Scholar
  47. Sandlund OT, Klyve L, Næsje TF (1985b) Growth, habitat and food of burbot Lota lota in Lake Mjøsa. Fauna 38:37–43 (in Norwegian with English summary) Google Scholar
  48. Sandlund OT, Stang YG, Kjellberg G, Næsje TF, Hambo MU (2005) European smelt (Osmerus eperlanus) eats all; eaten by all: is it a key species in lakes? Verh Internat Verein Limnol 29:432–436Google Scholar
  49. Sandlund OT, Museth J, Næsje TF, Rognerud S, Saksgård R, Hesthagen T, Borgstrøm R (2010) Habitat use and diet of sympatric Arctic charr (Salvelinus alpinus) and whitefish (Coregonus lavaretus) in five lakes in southern Norway: not only interspecific population dominance? Hydrobiologia 650:27–41CrossRefGoogle Scholar
  50. Sandlund OT, Haugerud E, Rognerud S, Borgstrøm R (2013) Arctic charr (Salvelinus alpinus) squeezed in a complex fish community dominated by perch (Perca fluviatilis). Fauna Norvegica 33:1–11CrossRefGoogle Scholar
  51. Sandlund OT, Eloranta AP, Borgstrøm R, Hesthagen T, Johnsen SI, Museth J, Rognerud S (2016) The trophic niche of Arctic charr in large southern Scandinavian lakes is determined by fish community and lake morphometry. Hydrobiologia 783:117–130CrossRefGoogle Scholar
  52. Sandlund OT, Grøndahl FA, Kjellberg G, Næsje TF (2017) Variabel livshistorie hos krøkle (Osmerus eperlanus) i Mjøsa og Randsfjorden. Vann 1:81–92. In Norwegian with English summaryGoogle Scholar
  53. Schindler DE, Scheuerell MD (2002) Habitat coupling in lake ecosystems. Oikos 98:177–189CrossRefGoogle Scholar
  54. Shearer WM (1992) Atlantic salmon scale reading guidelines. ICES cooperative research report no. 188, International Council for the Exploration of the Sea, Copenhagen, DenmarkGoogle Scholar
  55. Sterligova OP, Ilmast NV (2017) Population dynamics of invasive species of smelt Osmerus eperlanus in Lake Syamozero (South Karelia). J Ichthyol 57:730–738CrossRefGoogle Scholar
  56. Stetter SLP, Thomson JLS, Rudstam LG, Parrish DL, Sullivan PJ (2007) Importance and predictability of cannibalism in rainbow smelt. Trans Am Fish Soc 136:227–237CrossRefGoogle Scholar
  57. Strayer DL, D´Antonio CM, Essl F, Fowler MS, Geist J, Hilt S, Jarić I, Jöhnk K, Jones CG, Lambin X, Latzka AW, Pergl J, Pyšek P, Robertson P, von Schmalensee M, Stefansson RA, Wright J, Jeschke JM (2017) Boom-bust dynamics in biological invasions: towards an improved application of the concept. Ecol Lett 20:1337–1350CrossRefPubMedGoogle Scholar
  58. Syväranta J, Hämäläinen H, Jones RI (2006) Within-lake variability in carbon and nitrogen stable isotope signatures. Freshw Biol 51:1090–1102CrossRefGoogle Scholar
  59. Vander Zanden MJ, Rasmussen JB (1996) A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecol Monogr 66:451–477CrossRefGoogle Scholar
  60. Vander Zanden MJ, Vadeboncoeur Y (2002) Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83:2152–2161CrossRefGoogle Scholar
  61. Vander Zanden MJ, Casselman JM, Rasmussen JB (1999) Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464–467CrossRefGoogle Scholar
  62. Wootton KL (2017) Omnivory and stability in freshwater habitats: does theory match reality? Freshw Biol 62:821–832CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Antti P. Eloranta
    • 1
    Email author
  • Stein I. Johnsen
    • 2
  • Michael Power
    • 3
  • Kim M. Bærum
    • 2
  • Odd Terje Sandlund
    • 1
  • Anders G. Finstad
    • 1
    • 4
  • Sigurd Rognerud
    • 5
  • Jon Museth
    • 2
  1. 1.Department of Aquatic EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
  2. 2.Human Dimension DepartmentNorwegian Institute for Nature Research (NINA)LillehammerNorway
  3. 3.Department of BiologyUniversity of WaterlooWaterlooCanada
  4. 4.Department of Natural History, Centre for Biodiversity DynamicsNTNU University MuseumTrondheimNorway
  5. 5.Norwegian Institute for Water Research (NIVA)OttestadNorway

Personalised recommendations