The potential invasiveness of an aquatic macrophyte reflects founder effects from native niche

Abstract

Biological invasions are important drivers of biodiversity loss. Hence, predicting invasion risks considering the invasion history of a species might help drive meaningful conservation strategies. We investigated the niche dynamics occurring during the invasion of Hydrilla verticillata in North and South America. Because of founder effects, we hypothesised that occupied invaded area niches across North and South American are a subset of the occupied niche in the native range. Moreover, according to the invasion history, we expected that the South American niche is more similar to the North American one than the native niche. We built ecological niche models to predict the potential distribution of hydrilla from native and invaded occurrence records, as well as analysing niche overlap, equivalency, and similarity between the native and two invaded areas. Although the models predicted spatially congruent suitable sites, the ones based on native occurrence records predicted larger geographical ranges for hydrilla across South America than those based on the records of its North American invasions. The environmental conditions the species occupied in both invaded areas are modestly overlapped with the native area (Schoener’s D < 0.6), with native and South American niches showing the highest overlap and significant equivalency. Contrary to our prediction, the invaded North and South American niches presented the smallest niche overlap. Our findings suggest that founder effects triggered deep shifts in hydrilla’s occupation abilities across invaded areas, but do not support successive invasion events. Hydrilla’s Grinnellian niche was maintained throughout the invaded areas, and its potential invasion across South America is massive, regardless of its origin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alahuhta J, Heino J, Luoto M (2011) Climate change and the future distributions of aquatic macrophytes across boreal catchments. J Biogeogr 38:383–393. https://doi.org/10.1111/j.1365-2699.2010.02412.x

    Article  Google Scholar 

  2. Alahuhta J, Ecke F, Johnson LB et al (2017) A comparative analysis reveals little evidence for niche conservatism in aquatic macrophytes among four areas on two continents. Oikos 126:136–148. https://doi.org/10.1111/oik.03154

    Article  Google Scholar 

  3. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. https://doi.org/10.1016/j.tree.2006.09.010

    Article  Google Scholar 

  4. Araújo MB, Ferri-Yáñez F, Bozinovic F et al (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219. https://doi.org/10.1111/ele.12155

    Article  PubMed  Google Scholar 

  5. Ascunce MS, Yang C-C, Oakey J et al (2011) Global invasion history of the fire ant Solenopsis invicta. Science 331:1066–1068. https://doi.org/10.1126/science.1198734

    CAS  Article  PubMed  Google Scholar 

  6. Broennimann O, Fitzpatrick MC, Pearman PB et al (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Glob Ecol Biogeogr 21:481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x

    Article  Google Scholar 

  7. Broennimann O, Petitpierre B, Randin C, et al (2015) Package “ecospat”

  8. Buckingham GR, Bennett CA (1996) Laboratory biology of an immigrant Asian moth, Parapoynx diminutalis (Lepidoptera: Pyralidae), on Hydrilla verticillata (Hydrocharitacea). Fla Entomol 79:353–363

    Article  Google Scholar 

  9. Cook CDK, Lüönd R (1982) A revision of the genus Hydrilla (Hydrocharitaceae). Aquat Bot 13:485–504. https://doi.org/10.1016/0304-3770(82)90074-2

    Article  Google Scholar 

  10. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679. https://doi.org/10.1126/science.292.5517.673

    CAS  Article  PubMed  Google Scholar 

  11. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. https://doi.org/10.1111/j.1365-294X.2007.03538.x

    CAS  Article  PubMed  Google Scholar 

  12. Elith J (2000) Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. Quantitative methods for conservation biology. Springer, New York, pp 39–58

    Google Scholar 

  13. Forsman A (2014) Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. PNAS 111:302–307. https://doi.org/10.1073/pnas.1317745111

    CAS  Article  PubMed  Google Scholar 

  14. Gillard M, Thiébaut G, Deleu C, Leroy B (2017) Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biol Invasions 19:2159–2170. https://doi.org/10.1007/s10530-017-1428-y

    Article  Google Scholar 

  15. Guisan A, Petitpierre B, Broennimann O et al (2014) Unifying niche shift studies: insights from biological invasions. Trends Ecol Evol 29:260–269. https://doi.org/10.1016/j.tree.2014.02.009

    Article  PubMed  Google Scholar 

  16. Heckenberger MJ, Russell JC, Toney JR, Schmidt MJ (2007) The legacy of cultural landscapes in the Brazilian Amazon: implications for biodiversity. Philos Trans R Soc Lond B Biol Sci 362:197–208. https://doi.org/10.1098/rstb.2006.1979

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hijmans ARJ, Etten JV (2012) Package “raster”

  18. Holland BS (2001) Invasion without a bottleneck: microsatellite variation in natural and invasive populations of the brown mussel Perna perna (L). Mar Biotechnol 3:407–415. https://doi.org/10.1007/s1012601-0060-Z

    CAS  Article  PubMed  Google Scholar 

  19. Kelly R, Leach K, Cameron A et al (2014) Combining global climate and regional landscape models to improve prediction of invasion risk. Divers Distrib 20:884–894. https://doi.org/10.1111/ddi.12194

    Article  Google Scholar 

  20. Lamigueiro OP, Hijmans R (2018) Package “rasterVis”

  21. Langeland KA (1996) Hydrilla verticillata (L.F.) Royle (Hydrocharitaceae), “The perfect aquatic weed”. Castanea 61:293–304

    Google Scholar 

  22. Madeira PT, Van TK, Center TD (1999) Integration of five Southeast Asian accessions into the world-wide phenetic relationships of Hydrilla verticillata as elucidated by random amplified polymorphic DNA analysis. Aquat Bot 63:161–167. https://doi.org/10.1016/S0304-3770(98)00114-4

    CAS  Article  Google Scholar 

  23. Michelan TS, Silveira MJ, Petsch DK et al (2014) The invasive aquatic macrophyte Hydrilla verticillata facilitates the establishment of the invasive mussel Limnoperna fortunei in Neotropical reservoirs. J Limnol. https://doi.org/10.4081/jlimnol.2014.909

    Article  Google Scholar 

  24. Müller R, Nowicki C, Barthlott W, Ibisch PL (2003) Biodiversity and endemism mapping as a tool for regional conservation planning-case study of the Pleurothallidinae (Orchidaceae) of the Andean rain forests in Bolivia. Biodivers Conserv 12:2005–2024. https://doi.org/10.1023/A:1024195412457

    Article  Google Scholar 

  25. Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433. https://doi.org/10.1086/378926

    Article  PubMed  Google Scholar 

  26. Peterson AT (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38:817–827. https://doi.org/10.1111/j.1365-2699.2010.02456.x

    Article  Google Scholar 

  27. Petitpierre B, Kueffer C, Broennimann O et al (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348. https://doi.org/10.1126/science.1215933

    CAS  Article  PubMed  Google Scholar 

  28. Ribas LGS, Cunha ER, Vitule JRS et al (2017) Biotic resistance by snails and fish to an exotic invasive aquatic plant. Freshw Biol 62:1266–1275. https://doi.org/10.1111/fwb.12943

    Article  Google Scholar 

  29. Rödder D, Lötters S (2009) Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Glob Ecol Biogeogr 18:674–687. https://doi.org/10.1111/j.1466-8238.2009.00477.x

    Article  Google Scholar 

  30. Santos MJ, Anderson LW, Ustin SL (2011) Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional scale. Biol Invasions 13:443–457. https://doi.org/10.1007/s10530-010-9840-6

    Article  Google Scholar 

  31. Schoener TW (1974) Some methods for calculating competition coefficients from resource-utilization spectra. Am Nat 108:332–340. https://doi.org/10.1086/282911

    Article  PubMed  Google Scholar 

  32. Silva DP, Vilela B, Buzatto BA et al (2016) Contextualized niche shifts upon independent invasions by the dung beetle Onthophagus taurus. Biol Invasions 18:3137–3148. https://doi.org/10.1007/s10530-016-1204-4

    Article  Google Scholar 

  33. Silveira MJ, Thomaz SM (2015) Growth of a native versus an invasive submerged aquatic macrophyte differs in relation to mud and organic matter concentrations in sediment. Aquat Bot 124:85–91. https://doi.org/10.1016/j.aquabot.2015.03.004

    Article  Google Scholar 

  34. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x

    Article  PubMed  Google Scholar 

  35. Sousa WTZ (2011) Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem. Hydrobiologia 669:1. https://doi.org/10.1007/s10750-011-0696-2

    Article  Google Scholar 

  36. Sousa WTZ, Thomaz SM, Murphy KJ et al (2009) Environmental predictors of the occurrence of exotic Hydrilla verticillata (L.f.) Royle and native Egeria najas Planch. in a sub-tropical river floodplain: The Upper River Paraná, Brazil. Hydrobiologia 632:65–78. https://doi.org/10.1007/s10750-009-9828-3

    Article  Google Scholar 

  37. Steward KK, Van TK (1987) Comparative studies of monoecious and dioecious hydrilla (Hydrilla verticillata) biotypes. Weed Sci 35:204–210

    CAS  Google Scholar 

  38. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615

    CAS  Article  PubMed  Google Scholar 

  39. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x

    Article  PubMed  Google Scholar 

  40. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431

    Article  Google Scholar 

  41. Zhang Y, Yang N, Xu J, Yin Y (2017) Long-term study of the relationship between precipitation and aquatic vegetation succession in East Taihu Lake, China. Scientifica. https://doi.org/10.1155/2017/6345138

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhu J, Yu D, Xu X (2015) The phylogeographic structure of Hydrilla verticillata (Hydrocharitaceae) in China and its implications for the biogeographic history of this worldwide-distributed submerged macrophyte. BMC Evol Biol 15:95. https://doi.org/10.1186/s12862-015-0381-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/MEC) for granting LGR, CCS, and DKP scholarships. We also thank the anonymous reviewers and the associate editor for useful comments.

Data accessibility

All datasets are derived from the Global Biodiversity Information Facility online database (http://www.gbif.org accessed in August 2016). Other records of Hydrilla verticillata in South America were obtained from specialists in macrophytes in Brazil. We are willing to share all data with any interested researcher who contacts the corresponding author.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luiz Guilherme dos Santos Ribas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 317 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ribas, L.G.S., de Cássia-Silva, C., Petsch, D.K. et al. The potential invasiveness of an aquatic macrophyte reflects founder effects from native niche. Biol Invasions 20, 3347–3355 (2018). https://doi.org/10.1007/s10530-018-1780-6

Download citation

Keywords

  • Hydrilla verticillata
  • Ecological niche modelling
  • Nested niche
  • Biological invasion
  • Niche conservatism
  • Species distribution modelling