Amur maple (Acer ginnala): an emerging invasive plant in North America

Abstract

Acer ginnala Maxim. (Amur maple) is a growing threat to woodland systems in North America. Despite this, Amur maple has been largely ignored by ecologists, and scientific understanding of the species is mostly limited to anecdotal evidence from land managers. We evaluated the cover and richness of native and exotic understory plant communities under Amur maple canopies, native tree canopies, and nearby open areas near St. Paul, Minnesota, USA. Overall, Amur maple created dense canopies that only allowed 2% canopy light penetration, strongly reducing cover of all plants except Amur maple. With this critical first step in understanding the impacts of Amur maple complete, we suggest key research priorities related to the distribution of Amur maple, its mechanisms and impacts of invasion, and how best to control its spread in order to encourage future research into Amur maple and mitigate the species’ potential for ecological and economic harm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Amur maple (Acer ginnala) - EDDMapS Southeast Distribution. In: EDDMapS. http://www.eddmaps.org/distribution/uscounty.cfm?sub=3965. Accessed 15 Sept 2016

  2. Amur maple (Not recommended)|The Morton Arboretum. http://www.mortonarb.org/trees-plants/tree-plant-descriptions/amur-maple-not-recommended. Accessed 19 Sept 2016

  3. Amur maple - Invasive species. Minnesota Department of Natural Resources. https://www.dnr.state.mn.us/invasives/terrestrialplants/woody/amurmaple.html. Accessed 15 Sep 2016

  4. An H, Shangguan Z (2010) Leaf stoichiometric trait and specific leaf area of dominant species in the secondary succession of the loess plateau. Pol J Ecol 58:103–113

    Google Scholar 

  5. Anderson RC, Loucks OL, Swain AM (1969) Herbaceous response to canopy cover, light intensity, and throughfall precipitation in coniferous forests. Ecology 50:255–263. https://doi.org/10.2307/1934853

    Article  Google Scholar 

  6. Bailey LH (1924) Manual of cultivated plants. Macmillan Co., New York

    Google Scholar 

  7. Bauer J (2012) Invasive species: “back-seat drivers” of ecosystem change? Biol Invasions 14:1295–1304. https://doi.org/10.1007/s10530-011-0165-x

    Article  Google Scholar 

  8. Bonner FT, Karrfalt RP (2008) The woody plant seed manual. USDA Forest Service, Washington

    Google Scholar 

  9. Canham CD, Denslow JS, Platt WJ et al (1990) Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can J For Res 20:620–631. https://doi.org/10.1139/x90-084

    Article  Google Scholar 

  10. Cawly J, Newton S, Bolyard M (2005) Allelopathic activity of a testa-derived solution from Siberian maple (Acer ginnala Maxim.) seeds. Allelopath J 16:227–238

    Google Scholar 

  11. Clinton BD, Boring LR, Swank WT (1994) Regeneration patterns in canopy gaps of mixed-oak forests of the southern appalachians: influences of topographic position and evergreen understory. Am Midl Nat 132:308–319. https://doi.org/10.2307/2426587

    Article  Google Scholar 

  12. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1

    Article  Google Scholar 

  13. Diez JM, Williams PA, Randall RP et al (2009) Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol Lett 12:1174–1183. https://doi.org/10.1111/j.1461-0248.2009.01376.x

    Article  PubMed  Google Scholar 

  14. Dirr M (1997) Dirr’s hardy trees and shrubs: an illustrated encyclopedia. Timber Press, Incorporated

    Google Scholar 

  15. Drenovsky RE, Grewell BJ, D’Antonio CM et al (2012) A functional trait perspective on plant invasion. Ann Bot. https://doi.org/10.1093/aob/mcs100

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. In: Futuyma D, Shafer H, Simberloff D (eds) Annual review of ecology, evolution, and systematics, vol 41. Annual Reviews, Palo Alto, pp 59–80

    Google Scholar 

  17. Ellsworth DS, Reich PB (1992) Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments. Funct Ecol 6:423–435. https://doi.org/10.2307/2389280

    Article  Google Scholar 

  18. Fang W, Wang X (2011) Impact of invasion of Acer platanoides on canopy structure and understory seedling growth in a hardwood forest in North America. Trees 25:455–464. https://doi.org/10.1007/s00468-010-0520-z

    Article  Google Scholar 

  19. Forrester JA, Lorimer CG, Dyer JH et al (2014) Response of tree regeneration to experimental gap creation and deer herbivory in north temperate forests. For Ecol Manag 329:137–147. https://doi.org/10.1016/j.foreco.2014.06.025

    Article  Google Scholar 

  20. Fridley JD (2012) Extended leaf phenology and the autumn niche in deciduous forest invasions. Nature 485:359–362. https://doi.org/10.1038/nature11056

    CAS  Article  PubMed  Google Scholar 

  21. Galbraith-Kent SL, Handel SN (2008) Invasive Acer platanoides inhibits native sapling growth in forest understorey communities. J Ecol 96:293–302. https://doi.org/10.1111/j.1365-2745.2007.01337.x

    Article  Google Scholar 

  22. Gilman E, Watson D (1993) Acer ginnala. USDA Forest Service, Washington

    Google Scholar 

  23. Grotkopp E, Rejmanek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiospernis. Am J Bot 94:526–532. https://doi.org/10.3732/ajb.94.4.526

    Article  PubMed  Google Scholar 

  24. Grotkopp E, Erskine-Ogden J, Rejmanek M (2010) Assessing potential invasiveness of woody horticultural plant species using seedling growth rate traits. J Appl Ecol 47:1320–1328. https://doi.org/10.1111/j.1365-2664.2010.01878.x

    Article  Google Scholar 

  25. Guo H, Zhao H, Wang S et al (2015) Determining the recruitment limitation of three native woody species in the Chinese pine (Pinus tabuliformis Carr.) plantations on the Loess Plateau, China. Scand J For Res 30:538–546. https://doi.org/10.1080/02827581.2015.1035671

    Article  Google Scholar 

  26. Hartman KM, McCarthy BC (2004) Restoration of a forest understory after the removal of an invasive shrub, Amur honeysuckle (Lonicera maackii). Restor Ecol 12:154–165. https://doi.org/10.1111/j.1061-2971.2004.00368.x

    Article  Google Scholar 

  27. Knight KS, Kurylo JS, Endress AG et al (2007) Ecology and ecosystem impacts of common buckthorn (Rhamnus cathartica): a review. Biol Invasions 9:925–937. https://doi.org/10.1007/s10530-007-9091-3

    Article  Google Scholar 

  28. Kostel-Hughes F, Young T, Wehr J (2005) Effects of leaf litter depth on the emergence and seedling growth of deciduous forest tree species in relation to seed size. J Torrey Bot Soc 132:50–61. https://doi.org/10.3159/1095-5674(2005)132[50:EOLLDO]2.0.CO;2

    Article  Google Scholar 

  29. Lei TT, Lechowicz MJ (1997) The photosynthetic response of eight species of Acer to simulated light regimes from the centre and edges of gaps. Funct Ecol 11:16–23. https://doi.org/10.1046/j.1365-2435.1997.00048.x

    Article  Google Scholar 

  30. Levine J, Adler P, Yelenik S (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. https://doi.org/10.1111/j.1461-0248.2004.00657.x

    Article  Google Scholar 

  31. Liao C, Peng R, Luo Y et al (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. https://doi.org/10.1111/j.1469-8137.2007.02290.x

    CAS  Article  PubMed  Google Scholar 

  32. Macdonald SE, Fenniak TE (2007) Understory plant communities of boreal mixedwood forests in western Canada: natural patterns and response to variable-retention harvesting. For Ecol Manag 242:34–48. https://doi.org/10.1016/j.foreco.2007.01.029

    Article  Google Scholar 

  33. Machado J-L, Reich PB (1999) Evaluation of several measures of canopy openness as predictors of photosynthetic photon flux density in deeply shaded conifer-dominated forest understory. Can J For Res 29:1438–1444. https://doi.org/10.1139/x99-102

    Article  Google Scholar 

  34. Marosz A (2009) Effect of fulvic and humic organic acids and calcium on growth and chlorophyll content of tree species grown under salt stress. Dendrobiology 62:47–53

    CAS  Google Scholar 

  35. Matson E (2011) Acer tataricum. http://dnr.wi.gov/topic/Invasives/fact/AmurMaple.html. Accessed 15 Sep 2016

  36. McLachlan SM, Bazely DR (2001) Recovery patterns of understory herbs and their use as indicators of deciduous forest regeneration. Conserv Biol 15:98–110

    Article  Google Scholar 

  37. Messier C, Parent S, Bergeron Y (1998) Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests. J Veg Sci 9:511–520. https://doi.org/10.2307/3237266

    Article  Google Scholar 

  38. Paquette A, Fontaine B, Berninger F et al (2012) Norway maple displays greater seasonal growth and phenotypic plasticity to light than native sugar maple. Tree Physiol 32:1339–1347. https://doi.org/10.1093/treephys/tps092

    CAS  Article  PubMed  Google Scholar 

  39. Pearcy RW (1983) The light environment and growth of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia 58:19–25. https://doi.org/10.1007/BF00384537

    Article  PubMed  Google Scholar 

  40. Reich PB, Wright IJ, Cavender-Bares J et al (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164. https://doi.org/10.1086/374368

    Article  Google Scholar 

  41. Reinhart KO, Gurnee J, Tirado R, Callaway RM (2006) Invasion through quantitative effects: intense shade drives native decline and invasive success. Ecol Appl 16:1821–1831. https://doi.org/10.1890/1051-0761(2006)016[1821:ITQEIS]2.0.CO;2

    Article  PubMed  Google Scholar 

  42. Rejmanek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661. https://doi.org/10.2307/2265768

    Article  Google Scholar 

  43. Rejmánek M, Richardson DM, Pysek P (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094. https://doi.org/10.1111/ddi.12075

    Article  Google Scholar 

  44. Roth AM, Whitfeld TJS, Lodge AG et al (2015) Invasive earthworms interact with abiotic conditions to influence the invasion of common buckthorn (Rhamnus cathartica). Oecologia 178:219–230. https://doi.org/10.1007/s00442-014-3175-4

    Article  PubMed  Google Scholar 

  45. Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  46. Schmidt JP, Drake JM (2011) Why are some plant genera more invasive than others? PLoS ONE. https://doi.org/10.1371/journal.pone.0018654

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schuster MJ, Dukes JS (2014) Non-additive effects of invasive tree litter shift seasonal N release: a potential invasion feedback. Oikos 123:1101–1111. https://doi.org/10.1111/oik.01078

    CAS  Article  Google Scholar 

  48. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102. https://doi.org/10.1146/annurev.ecolsys.110308.120304

    Article  Google Scholar 

  49. USDA (2017) The PLANTS database (http://plants.usda.gov). National Plant Data Team, Greensboro, NC 27401-4901 USA. Accessed 30 June 2017

  50. Vila M, Espinar JL, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems RID F-7454-2011 RID A-2783-2012 RID B-1957-2012. Ecol Lett 14:702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x

    Article  PubMed  Google Scholar 

  51. Zhu J, Cheng H-M, Zhu Y-P et al (2015) Geographic variations in leaf shape of Acer ginnala (Aceraceae). Plant Syst Evol 301:1017–1028. https://doi.org/10.1007/s00606-014-1132-7

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Schuster.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schuster, M.J., Reich, P.B. Amur maple (Acer ginnala): an emerging invasive plant in North America. Biol Invasions 20, 2997–3007 (2018). https://doi.org/10.1007/s10530-018-1754-8

Download citation

Keywords

  • Acer ginnala
  • Acer tartaricum
  • Forest
  • Grassland
  • Invasion
  • North America
  • Woody
  • Exotic
  • Understory
  • Native
  • Competition
  • Light
  • Management