Advertisement

Biological Invasions

, Volume 20, Issue 10, pp 2695–2706 | Cite as

Using invasion theory to predict the fate of arbuscular mycorrhizal fungal inoculants

  • Corrina N. ThomsenEmail author
  • Miranda M. Hart
Perspectives and paradigms

Abstract

The agricultural use of commercial “biofertilizers” containing arbuscular mycorrhizal (AM) fungi, obligate symbionts that help plants take up nutrients, has resulted in the global introduction of AM fungi to non-native environments. Despite their growing use and evidence for endemism among AM fungi, the risk of AM fungi becoming invasive through “biofertilizer” application has not been studied in the context of general invasion theory. Understanding their dispersal by multiple vectors and in different environments is key to understanding how quickly they could spread. In this review, we consider the risk of invasion by commercial AM fungi in terms of a theoretical framework. We propose traits that make an isolate good for use as a commercial product, such competitiveness and high sporulation rate, may also increase invasiveness.

Keywords

Arbuscular mycorrhizal fungi Invasion Biofertilizers Fungal traits Dispersal Soil microbiome Agriculture 

Notes

Acknowledgements

We are grateful to two anonymous reviewers who provided feedback on an earlier version of this manuscript. This work was supported by grants from the NSERC Discovery Program and AAFC Growing Forward 2 to M.M.H., and a NSERC CGS-M Award to C.N.T.

Authors’ contributions

CNT led the writing with substantial contributions from MMH, and the ideas presented herein were developed together.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abbott LK, Robson AD (1985) The effect of soil-pH on the formation of VA mycorrhizas by 2 species of Glomus. Aust J Soil Res 23:253–261CrossRefGoogle Scholar
  2. Allen MF (1987) Re-establishment of mycorrhizas on Mount St. Helens: migration vectors. Trans Br Mycol Soc 88:413–441.  https://doi.org/10.1016/S0007-1536(87)80019-0 CrossRefGoogle Scholar
  3. Allen MF, MacMahon JA (1988) Direct VA mycorrhizal inoculation of colonizing plants by pocket Gophers (Thomomys talpoides) on Mount St. Helens. Mycologia 80:754–756CrossRefGoogle Scholar
  4. Allen MF, MacMahon JA, Andersen DC (1984) Reestablishment of endogonaceae on Mount St. Helens: survival of residuals. Mycologia 76:1031–1038CrossRefGoogle Scholar
  5. Allen MF, Hipps LE, Wooldridge GL (1989) Wind dispersal and subsequent establishment of VA mycorrhizai fungi across a successional arid landscape. Landsc Ecol 2:165–171CrossRefGoogle Scholar
  6. Andow DA, Kareiva PM, Levin SA, Okubo A (1990) Spread of invading organisms. Landsc Ecol 4:177–188.  https://doi.org/10.1007/BF00132860 CrossRefGoogle Scholar
  7. Angelard C, Tanner CJ, Fontanillas P, Niculita-Hirzel H, Masclaux F, Sanders IR (2014) Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. ISME J 8:284–294.  https://doi.org/10.1038/ismej.2013.154 CrossRefPubMedGoogle Scholar
  8. Baas-Becking L (1934) Geobiologie of inleiding tot de milieukunde. Van Stockkum & Zoon, The HagueGoogle Scholar
  9. Beadell JS, Ishtiaq F, Covas R, Melo M, Warren BH, Atkinson CT, Bensch S, Graves GR, Jhala YV, Pierce MA, Rahmani AR, Fonseca DM, Fleischer RC (2006) Global phylogeographic limits of Hawaii’s avian malaria. Proc R Soc B Biol Sci 273:2935–2944.  https://doi.org/10.1098/rspb.2006.3671 CrossRefGoogle Scholar
  10. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016a) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1–13.  https://doi.org/10.3389/fmicb.2015.01559 CrossRefGoogle Scholar
  11. Berruti A, Lumini E, Bianciotto V (2016b) AMF components from a microbial inoculum fail to colonize roots and lack soil persistence in an arable maize field. Symbiosis.  https://doi.org/10.1007/s13199-016-0442-7 CrossRefGoogle Scholar
  12. Bever JD, Wang M (2005) Hyphal fusion and multigenomic structure. Nature 433:2004–2005.  https://doi.org/10.1038/nature03294 CrossRefGoogle Scholar
  13. Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923–932.  https://doi.org/10.1641/0006-3568(2001)051 CrossRefGoogle Scholar
  14. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478.  https://doi.org/10.1016/j.tree.2010.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339.  https://doi.org/10.1016/j.tree.2011.03.023 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Blanke V, Renker C, Wagner M, Füllner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992.  https://doi.org/10.1111/j.1469-8137.2005.01374.x CrossRefPubMedGoogle Scholar
  17. Brasier CM (2000) Intercontinental spread and continuing evolution of the dutch elm disease pathogens. In: Dunn CP (ed) The elms: breeding, conservation, and disease management. Kluwer Academic Publishers, Boston, pp 61–72CrossRefGoogle Scholar
  18. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  19. Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733.  https://doi.org/10.1038/nature02322 CrossRefPubMedGoogle Scholar
  20. Camargo-Ricalde SL (2002) Dispersal, distribution, and establishment of mycorrhizal fungi: a review. Boletín la Soc Botánica México 71:33–44Google Scholar
  21. Chaudhary VB, Lau MK, Johnson NC (2008) Macroecology of microbes—biogeography of the Glomeromycota. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, New York, pp 529–563CrossRefGoogle Scholar
  22. Cordell D, White S (2013) Sustainable phosphorus measures: strategies and technologies for achieving phosphorus security. Agronomy 3:86–116.  https://doi.org/10.3390/agronomy3010086 CrossRefGoogle Scholar
  23. Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305.  https://doi.org/10.1016/j.gloenvcha.2008.10.009 CrossRefGoogle Scholar
  24. Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J, Evans M (2004) Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. J Environ Hortic 22:149–154Google Scholar
  25. Davison J, Ainsaar L, Burla S et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973.  https://doi.org/10.5061/dryad.2m15n CrossRefPubMedGoogle Scholar
  26. de Bruyn LAL, Conacher AJ (1994) The bioturbation activity of ants in agricultural and naturally vegetated habitats in semi-arid environments. Aust J Soil Res 32:555–570CrossRefGoogle Scholar
  27. de la Providencia IE, Nadimi M, Beaudet D, Morales GR, Hijri M (2013) Detection of a transient mitochondrial DNA heteroplasmy in the progeny of crossed genetically divergent isolates of arbuscular mycorrhizal fungi. New Phytol 200:211–221CrossRefPubMedGoogle Scholar
  28. de Vries FT, Thébault E, Liiri M et al (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci U S A 110:14296–14301.  https://doi.org/10.1073/pnas.1305198110 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Declerck S, Strullu DG, Plenchette C (1996) In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242.  https://doi.org/10.1016/S0953-7562(96)80186-9 CrossRefGoogle Scholar
  30. Egan C, Li DW, Klironomos J (2014) Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions. Fungal Ecol 12:26–31.  https://doi.org/10.1016/j.funeco.2014.06.004 CrossRefGoogle Scholar
  31. Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496CrossRefGoogle Scholar
  32. Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609.  https://doi.org/10.1016/j.apsoil.2006.09.012 CrossRefGoogle Scholar
  33. Faye A, Dalpé Y, Ndung’u-Magiroi K, Jefwa J, Ndoye I, Diouf M, Lesueur D (2013) Evaluation of commercial arbuscular mycorrhizal inoculants. Can J Plant Sci 93:1201–1208.  https://doi.org/10.4141/cjps2013-326 CrossRefGoogle Scholar
  34. Feurtey A, Cornille A, Shykoff JA, Snirc A, Giraud T (2016) Crop-to-wild gene flow and its fitness consequences for a wild fruit tree: towards a comprehensive conservation strategy of the wild apple in Europe. Evol Appl 10:180–188.  https://doi.org/10.1111/eva.12441 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132CrossRefGoogle Scholar
  36. Food and Agriculture Association of the United Nations (2017) World fertilizer outlook to 2020. FAO.Google Scholar
  37. Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418CrossRefGoogle Scholar
  38. Gange AC (1993) Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol Biochem 25:1021–1026CrossRefGoogle Scholar
  39. Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271.  https://doi.org/10.1139/b04-072 CrossRefGoogle Scholar
  40. Goto BT, Maia LC (2005) Sporocarpic species of arbuscular mycorrhizal fungi (Glomeromycota), with a new report from Brazil. Acta Bot Bras 19:633–637.  https://doi.org/10.1590/S0102-33062005000300025 CrossRefGoogle Scholar
  41. Göttlich E, Van Der Lubbe W, Lange B et al (2002) Fungal flora in groundwater-derived public drinking water. Int J Hyg Environ Health 205:269–279CrossRefPubMedGoogle Scholar
  42. Graham JH, Leonard RT, Menge JA (1982) Interaction of light intensity and soil temperature with phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. New Phytol 91:683–690CrossRefGoogle Scholar
  43. Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshw Biol 54:649–677.  https://doi.org/10.1111/j.1365-2427.2008.02013.x CrossRefGoogle Scholar
  44. Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2012) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20:131–138CrossRefPubMedGoogle Scholar
  45. Harinikumar KM, Bagyaraj DJ (1994) Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biol Fertil Soils 18:115–118.  https://doi.org/10.1007/BF00336456 CrossRefGoogle Scholar
  46. Harner MJ, Piotrowski JS, Lekberg Y, Stanford JA, Rillig MC (2009) Heterogeneity in mycorrhizal inoculum potential of flood-deposited sediments. Aquat Sci 71:331–337.  https://doi.org/10.1007/s00027-009-9198-y CrossRefGoogle Scholar
  47. Hart MM, Reader RJ, Klironomos JN (2003) Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol 18:418–423.  https://doi.org/10.1016/S0169-5347(03)00127-7 CrossRefGoogle Scholar
  48. Hart MM, Antunes PM, Abbott LK (2017) Unknown risks to soil biodiversity from commercial fungal inoculants. Nat Ecol Evol.  https://doi.org/10.1038/s41559-017-0115 CrossRefPubMedGoogle Scholar
  49. Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K, Taylor C, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101.  https://doi.org/10.1111/j.1461-0248.2004.00687.x CrossRefGoogle Scholar
  50. Haygood R, Ives AR, Andow DA (2003) Consequences of recurrent gene flow from crops to wild relatives. Proc R Soc B 270:1879–1886.  https://doi.org/10.1098/rspb.2003.2426 CrossRefPubMedGoogle Scholar
  51. Hazard C, Gosling P, van der Gast CJ, Mitchell DT, Doohan FM, Bending GD (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J 7:498–508.  https://doi.org/10.1038/ismej.2012.127 CrossRefPubMedGoogle Scholar
  52. Hernádi I, Sasvári Z, Albrechtová J, Posta K (2012) Arbuscular mycorrhizal inoculant increases yield of spice pepper and affects the indigenous fungal community in the field. HortScience 47:603–606Google Scholar
  53. Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163.  https://doi.org/10.1038/nature03158.1 CrossRefPubMedGoogle Scholar
  54. Ingold C, Hudson H (1993) Dispersal in Fungi. The biology of fungi, sixth. Springer, Dordrecht, pp 119–131CrossRefGoogle Scholar
  55. Janos DP, Sahley CT, Emmons LH (1995) Rodent dispersal of vesicular-arbuscular mycorrhizal fungi in amazonian Peru. Ecology 76:1852–1858CrossRefGoogle Scholar
  56. Jin H, Germida JJ, Walley FL (2013) Impact of arbuscular mycorrhizal fungal inoculants on subsequent arbuscular mycorrhizal fungi colonization in pot-cultured field pea (Pisum sativum L.). Mycorrhiza 23:45–59.  https://doi.org/10.1007/s00572-012-0448-9 CrossRefPubMedGoogle Scholar
  57. Johnson D, Vandenkoornhuyse PJ, Leake JR et al (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515.  https://doi.org/10.1046/j.1469-8137.2003.00938.x CrossRefGoogle Scholar
  58. Kanzler D, Buzina W, Paulitsch A et al (2007) Occurrence and hygienic relevance of fungi in drinking water. Mycoses 51:165–169.  https://doi.org/10.1111/j.1439-0507.2007.01454.x CrossRefGoogle Scholar
  59. Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303.  https://doi.org/10.1016/j.soilbio.2011.07.012 CrossRefGoogle Scholar
  60. Klironomos JN, Kendrick WB (1996) Palatability of microfungi to soil arthropods in relation to the functioning of arbuscular mycorrhizae. Biol Fertil Soils 21:43–52CrossRefGoogle Scholar
  61. Klironomos JN, Moutoglis P (1999) Colonization of nonmycorrhizal plants by mycorrhizal neighbours as influenced by the collembolan, Folsomia candida. Biol Fertil Soils 29:277–281CrossRefGoogle Scholar
  62. Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet J, Sanders IR (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci 101:2369–2374.  https://doi.org/10.1073/pnas.0306441101 CrossRefPubMedGoogle Scholar
  63. Koch AM, Antunes PM, Barto EK, Cipollini D, Mummey DL, Klironomos J (2011) The effects of arbuscular mycorrhizal (AM) fungal and garlic mustard introductions on native AM fungal diversity. Biol Invasions 13:1627–1639.  https://doi.org/10.1007/s10530-010-9920-7 CrossRefGoogle Scholar
  64. Koch AM, Antunes PM, Maherali H, Hart MM, Klironomos JN (2017) Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytol 214:1330–1337.  https://doi.org/10.1111/nph.14465 CrossRefPubMedGoogle Scholar
  65. Köhl L, Lukasiewicz CE, Van der Heijden MGA (2016) Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant, Cell Environ 39:136–146.  https://doi.org/10.1111/pce.12600 CrossRefGoogle Scholar
  66. Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042CrossRefGoogle Scholar
  67. Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745–748.  https://doi.org/10.1038/414745a CrossRefPubMedGoogle Scholar
  68. Lee KK, Reddy MV, Wani SP, Trirnurtulu N (1996) Vesicular-arbuscular mycorrhizal fungi in earthworm casts and surrounding soil in relation to soil management of a semi-arid tropical Alfisol. Appl Soil Ecol 3:177–181CrossRefGoogle Scholar
  69. Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? a meta analysis of studies published between 1988 and 2003. New Phytol 168:189–204CrossRefPubMedGoogle Scholar
  70. Litchman E (2010) Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett 13:1560–1572.  https://doi.org/10.1111/j.1461-0248.2010.01544.x CrossRefPubMedGoogle Scholar
  71. Malloch D, Blackwell M (1992) Dispersal of Fungal Diaspores. In: Carroll G, Wicklow D (eds) The fungal community: its organization and role in the ecosystem, second. Marcel Dekker Inc, New York, pp 147–172Google Scholar
  72. Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98:6599–6607.  https://doi.org/10.1007/s00253-014-5828-y CrossRefPubMedPubMedCentralGoogle Scholar
  73. Mangan SA, Adler GH (2000) Consumption of arbuscular mycorrhizal fungi by terrestrial and arboreal small mammals in a panamanian cloud forest. J Mammal 81:563–570CrossRefGoogle Scholar
  74. Mangan SA, Adler GH (2002) Seasonal dispersal of arbuscular mycorrhizal fungi by spiny rats in a neotropical forest. Oecologia 131:587–597.  https://doi.org/10.1007/s00442-002-0907-7 CrossRefPubMedGoogle Scholar
  75. Martiny JBH, Bohannan BJM, Brown JH et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112.  https://doi.org/10.1038/nrmicro1341 CrossRefPubMedGoogle Scholar
  76. Maser C, Trappe JM, Nussbaum RA (1978) Fungal-small mammal interrelationships with emphasis on oregon coniferous forests. Ecology 59:799–809CrossRefGoogle Scholar
  77. McGonigle TP (1995) The significance of grazing on fungi in nutrient cycling. Can J Bot 73:S1370–S1376CrossRefGoogle Scholar
  78. McIlveen WD, Cole HJ (1976) Spore dispersal of Endogonaceae by worms, ants, wasps, and birds. Can J Bot 54:1486–1489CrossRefGoogle Scholar
  79. Mummey DL, Antunes PM, Rillig MC (2009) Arbuscular mycorrhizal fungi pre-inoculant identity determines community composition in roots. Soil Biol Biochem 41:1173–1179.  https://doi.org/10.1016/j.soilbio.2009.02.027 CrossRefGoogle Scholar
  80. Nielsen KB, Kjøller R, Bruun HH, Schnoor TK, Rosendahl S (2016) Colonization of new land by arbuscular mycorrhizal fungi. Fungal Ecol 20:22–29.  https://doi.org/10.1016/j.funeco.2015.10.004 CrossRefGoogle Scholar
  81. Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738.  https://doi.org/10.1016/j.soilbio.2010.01.006 CrossRefGoogle Scholar
  82. Oehl F, Laczko E, Oberholzer H, Jansa J, Egli S (2017) Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biol Fertil Soils.  https://doi.org/10.1007/s00374-017-1217-x CrossRefGoogle Scholar
  83. Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM (2014) Where the wild things are: looking for uncultured Glomeromycota. New Phytol 204:171–179.  https://doi.org/10.1111/nph.12894 CrossRefPubMedGoogle Scholar
  84. Öpik M, Zobel M, Cantero JJ et al (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430.  https://doi.org/10.1007/s00572-013-0482-2 CrossRefPubMedGoogle Scholar
  85. Pellegrino E, Turrini A, Gamper HA, Cafà G, Bonari E, Young JPW, Giovanetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822.  https://doi.org/10.1111/j.1469-8137.2012.04090.x CrossRefPubMedGoogle Scholar
  86. Pereira VJ, Basílio MC, Fernandes D, Domingues M, Paiva JM, Benoliel MJ, Crespo MT, San Ramão MV (2009) Occurrence of filamentous fungi and yeasts in three different drinking water sources. Water Res 43:3813–3819.  https://doi.org/10.1016/j.watres.2009.05.024 CrossRefPubMedGoogle Scholar
  87. Powell C (1979) Spread of mycorrhizal fungi through soil. New Zeal J Agric Res 22:335–339.  https://doi.org/10.1080/00288233.1979.10430756 CrossRefGoogle Scholar
  88. Pringle A, Adams RI, Cross HB, Bruns TD (2009) The ectomycorrhizal fungus Amanita phalloides was introduced and is expanding its range on the west coast of North America. Mol Ecol 18:817–833.  https://doi.org/10.1111/j.1365-294X.2008.04030.x CrossRefPubMedGoogle Scholar
  89. Purin S, Morton JB (2011) In situ analysis of anastomosis in representative genera of arbuscular mycorrhizal fungi. Mycorrhiza 21:505–514.  https://doi.org/10.1007/s00572-010-0356-9 CrossRefPubMedGoogle Scholar
  90. Reddell P, Spain AV (1991) Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol Biochem 23:767–774CrossRefGoogle Scholar
  91. Reddell P, Spain AV, Hopkins M (1997) Dispersal of spores of mycorrhizal fungi in scats of native mammals in tropical forests of Northeastern Australia. Biotropica 29:184–192CrossRefGoogle Scholar
  92. Ricciardi A, Blackburn TM, Carlton JT et al (2017) Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol Evol 32:464–474.  https://doi.org/10.1016/j.tree.2017.03.007 CrossRefPubMedGoogle Scholar
  93. Richardson DM, Pysek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107CrossRefGoogle Scholar
  94. Rodriguez A, Sanders IR (2014) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061.  https://doi.org/10.1038/ismej.2014.207 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Ropars J, Toro K, Noel J, Pelin A, Charron P, Farinelli L, Marton T, Krüger M, Kuchs J, Brachmann A, Corradi N (2016) Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nat Microbiol.  https://doi.org/10.1038/nmicrobiol.2016.33 CrossRefPubMedGoogle Scholar
  96. Rosendahl S, McGee P, Morton JB (2009) Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18:4316–4329.  https://doi.org/10.1111/j.1365-294X.2009.04359.x CrossRefPubMedGoogle Scholar
  97. Rúa MA, Antoninka A, Antunes PM, Chaudhary VJ, Gehring C, Lamit LJ, Piculell BJ, Bever JD, Zabinski C, Meadow JF, Lajeunesse MJ, Milligan BG, Karst J, Hoeksema JD (2016) Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evol Biol 16:1–16.  https://doi.org/10.1186/s12862-016-0698-9 CrossRefGoogle Scholar
  98. Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271.  https://doi.org/10.1023/A:1020207631893 CrossRefGoogle Scholar
  99. Sanders IR, Croll D (2010) Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner. Annu Rev Genet 44:271–292.  https://doi.org/10.1146/annurev-genet-102108-134239 CrossRefPubMedGoogle Scholar
  100. Schechter SP, Bruns TD (2013) A common garden test of host-symbiont specificity supports a dominant role for soil type in determining AMF assemblage structure in collinsia sparsiflora. PLoS One.  https://doi.org/10.1371/journal.pone.0055507 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515.  https://doi.org/10.1111/j.1461-0248.2006.00910.x CrossRefPubMedGoogle Scholar
  102. Simberloff D, Parker IM, Windle PN (2005) Introduced species policy, management, and future research needs. Front Ecol Environ 3:12–20CrossRefGoogle Scholar
  103. Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218CrossRefPubMedGoogle Scholar
  104. Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New YorkGoogle Scholar
  105. Šobotník J, Jirošová A, Hanus R (2010) Chemical warfare in termites. J Insect Physiol 56:1012–1021.  https://doi.org/10.1016/j.jinsphys.2010.02.012 CrossRefPubMedGoogle Scholar
  106. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus GIomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332.  https://doi.org/10.1016/S0953-7562(96)80164-X CrossRefGoogle Scholar
  107. Stürmer SL, Morton JB (1997) Developmental patterns defining morphological characters in spores of four species in Glomus. Mycologia 89:72–81CrossRefGoogle Scholar
  108. Sýkorová Z, Börstler B, Zvolenská S, Fehrer J, Gryndler M, Vosátka M, Redecker D (2012) Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22:69–80.  https://doi.org/10.1007/s00572-011-0375-1 CrossRefPubMedGoogle Scholar
  109. Symanczik S, Courty PE, Boller T, Wiemken A, Al-Yahya’ei MN (2015) Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza 25:639–647.  https://doi.org/10.1007/s00572-015-0638-3 CrossRefPubMedGoogle Scholar
  110. Tarbell TJ, Koske RE (2007) Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza 18:51–56.  https://doi.org/10.1007/s00572-007-0152-3 CrossRefPubMedGoogle Scholar
  111. Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable saviours? considerations for achieving food security. J Ecol 105:921–929.  https://doi.org/10.1111/1365-2745.12788 CrossRefGoogle Scholar
  112. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San Clemente H, Shapiro H, van Tuinen D, Bécard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young JPW, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. PNAS 110:20117–20122CrossRefPubMedGoogle Scholar
  113. Tommerup IC (1982) Airstream fractionation of vesicular-arbuscular mycorrhizal fungi: concentration and enumeration of propagules. Appl Environ Microbiol 44:533–539PubMedPubMedCentralGoogle Scholar
  114. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  115. van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578CrossRefGoogle Scholar
  116. van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310.  https://doi.org/10.1111/j.1461-0248.2007.01139.x CrossRefPubMedGoogle Scholar
  117. Verbruggen E, van der Heijden MGA, Rillig MC, Kiers ET (2013) Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 197:1104–1109.  https://doi.org/10.1111/j.1469-8137.2012.04348.x CrossRefPubMedGoogle Scholar
  118. Warner NJ, Allen MF, MacMahon JA (1987) Dispersal agents of vesicular-arbuscular mycorrhizal fungi in a disturbed arid ecosystem. Mycologia 79:721–730CrossRefGoogle Scholar
  119. Werner GDA, Kiers ET (2015) Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol 205:1515–1524.  https://doi.org/10.1111/nph.13092 CrossRefPubMedGoogle Scholar
  120. Wicklow DT, Yocom DH (1982) Effect of larval grazing by Lycoriella mali (Diptera: Sciaridae) on species abundance of coprophilous fungi. Trans Br Mycol Soc 78:29–32.  https://doi.org/10.1016/S0007-1536(82)80073-9 CrossRefGoogle Scholar
  121. Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666CrossRefGoogle Scholar
  122. Zaharick J, Beck H, Beauchamp V (2015) An experimental test of Epi- and Endozoochory of Arbuscular Mycorrhizal fungi spores by small mammals in a Maryland forest. Northeast Nat 22:163–177CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of British Columbia OkanaganKelownaCanada

Personalised recommendations