Reproduction and potential range expansion of walnut twig beetle across the Juglandaceae

Abstract

Biological invasions by insects that vector plant pathogens have altered the composition of natural and urban forests. Thousand cankers disease is a new, recent example and is caused by the complex of walnut twig beetle, Pityophthorus juglandis, and the fungus, Geosmithia morbida, on susceptible hosts, notably some Juglans spp. and Pterocarya spp. Host colonization by P. juglandis may be particularly important for disease development, but the beetle’s host range is not known. In the United States and Italy, this insect has expanded its geographic range by colonizing naïve hosts. The objective of this study was to characterize limits to, and variation within, the host range of P. juglandis and infer the extent to which hosts might constrain the geographic distribution of the insect. We examined colonization and reproduction by P. juglandis in no-choice laboratory experiments with 11 Juglans spp., one Pterocarya sp., and two Carya spp. over 2 years and found that all but the Carya spp. were hosts. Reproduction was generally greater on Juglans californica, J. hindsii, and J. nigra, than on J. ailantifolia, J. cathayensis, J. cinerea, J. major, J. mandshurica, J. microcarpa, or J. regia. Escape of an insect vector into populations of evolutionary-naïve hosts can facilitate rapid range expansion by the pest and massive mortality to hosts. Multi-continental plantings of suitable species may facilitate geographic range expansion of P. juglandis and place other, native Juglans spp. at risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anulewicz AC, McCullough DG, Cappaert DL, Poland TM (2008) Host range of the emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) in North America: results of multiple-choice field experiments. Environ Entomol 37:230–241. https://doi.org/10.1603/0046-225x(2008)37[230:hrotea]2.0.co;2

    Article  PubMed  Google Scholar 

  2. Aradhya MK, Potter D, Simon CJ (2006) Cladistic biogeography of Juglans (Juglandaceae) based on chloroplast DNA intergenic spacer sequences. In: Motley TJ, Zerega N, Cross H (eds) Darwin’s harvest: new approaches to the origins, evolution and conservation of crops. Columbia University Press, New York, pp 143–170

    Google Scholar 

  3. Aukema JE, Leung B, Kovacs K et al (2011) Economic impacts of non-native forest insects in the continental United States. PLoS One 6:1–7. https://doi.org/10.1371/journal.pone.0024587

    Article  CAS  Google Scholar 

  4. Bai WN, Wang WT, Zhang DY (2016) Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia. New Phytol 209:1757–1772. https://doi.org/10.1111/nph.13711

    Article  PubMed  CAS  Google Scholar 

  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  6. Bentz BJ, Régnière J, Fettig CJ et al (2010) Climate change and bark beetles of the western US and Canada: direct and indirect effects. BioScience 60:602–613

    Article  Google Scholar 

  7. Branco M, Brockerhoff EG, Castagneyrol B et al (2015) Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. J Appl Ecol 52:69–77. https://doi.org/10.1111/1365-2664.12362

    Article  Google Scholar 

  8. Brasier CM (1991) Ophiostoma novo-ulmi sp. nov., caustive agent of current Dutch elm disease pandemics. Mycopathlogia 115:151–161

    Article  Google Scholar 

  9. Bright DE (1981) Taxonomic monograph of the genus Pityophthorus Eichhoff in North and Central America (Coleoptera: Scolytidae). Mem Entomol Soc Canada 113:1–378

    Article  Google Scholar 

  10. Cullingham CI, Cooke JEK, Dang S et al (2011) Mountain pine beetle host-range expansion threatens the boreal forest. Mol Ecol 20:2157–2171. https://doi.org/10.1111/j.1365-94x.2011.05086.x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dallara PL, Flint ML, Seybold SJ (2012) An analysis of the larval instars of the walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), in northern California black walnut, Juglans hindsii, and a new host record for Hylocurus hirtellus. Pan-Pac Entomol 88:248–266. https://doi.org/10.3956/2012-16.1

    Article  Google Scholar 

  12. de la Giroday HMC, Carroll AL, Aukema BH (2012) Breach of the northern Rocky Mountain geoclimatic barrier: initiation of range expansion by the mountain pine beetle. J Biogeogr 39:1112–1123. https://doi.org/10.1111/j.1365-2699.2011.02673.x

    Article  Google Scholar 

  13. Ehrlich J (1934) The beech bark disease: a Nectria disease of Fagus, following Cryptococcus fagi (Baer.). Can J For Res 10:593–692

    Article  Google Scholar 

  14. Faccoli M, Favaro R, Concheri G et al (2015) Tree colonization by the Asian longhorn beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae): effect of habitat and tree suitability. Insect Sci 2:288–296. https://doi.org/10.1111/1744-7917.12192

    CAS  Article  Google Scholar 

  15. Faccoli M, Simonato M, Rassati D (2016) Life history and geographical distribution of the walnut twig beetle, Pityophthorus juglandis (Coleoptera: Scolytinae), in southern Europe. J Appl Entomol 140:697–705. https://doi.org/10.1111/jen.12299

    Article  Google Scholar 

  16. Flint ML, Graves AD, Seybold SJ (2010) Thousand cankers disease of walnuts spreads in California. CAPCA Advisor Mag 8:36–39. http://entomology.ucdavis.edu/files/201360.pdf. Accessed 1 Sept 2016

  17. Flø D, Krokene P, Økland B (2014) Importing deciduous wood chips from North America to northern Europe—the risk of introducing bark- and wood-boring insects. Scand J For Res 29:77–89. https://doi.org/10.1080/02827581.2013.863380

    Article  Google Scholar 

  18. Fraedrich SW, Harrington TC, Rabaglia RJ et al (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis 92:215–224. https://doi.org/10.1094/pdis-92-2-0215

    Article  Google Scholar 

  19. Gandhi KJK, Herms DA (2010) Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol Invasions 12:389–405. https://doi.org/10.1007/s10530-009-9627-9

    Article  Google Scholar 

  20. Grant JF, Windham MT, Haun WG et al (2011) Initial assessment of thousand cankers disease on black walnut, Juglans nigra, in eastern Tennessee. Forests 2:741–748. https://doi.org/10.3390/f2030741

    Article  Google Scholar 

  21. Grauke LJ (2016) Hickories: Carya ovata. http://aggie-horticulture.tamu.edu/carya/species/ovata/ovata.htm. Accessed 5 July 2016

  22. Graves AD, Coleman TW, Seybold SJ (2011) Monitoring walnut health and decline in response to thousand cankers disease and infestation by the walnut twig beetle, Pityophthorus juglandis, in southern California and New Mexico. Year one Progress Report for USDA Forest Service Forest Health Monitoring Project INT-EM-B-11-03 http://fhm.fs.fed.us/em/funded/12/INT-EM-B-11-03.pdf. Accessed 24 Mar 2016

  23. Griffin GJ (2015) Status of thousand cankers disease on eastern black walnut in the eastern United States at two locations over 3 years. For Pathol 45:203–214. https://doi.org/10.1111/efp.12154

    Article  Google Scholar 

  24. Haack R, Hérard F, Sun J, Turgeon JJ (2010) Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Annu Rev Entomol 55:521–546. https://doi.org/10.1146/annurev-ento-112408-085427

    Article  PubMed  CAS  Google Scholar 

  25. Hanula JL, Mayfield AE, Fraedrich SW, Rabaglia RJ (2008) Biology and host associations of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae), exotic vector of laurel wilt killing redbay trees in the southeastern United States. J Econ Entomol 101:1276–1286. https://doi.org/10.1603/0022-0493(2008)101[1276:bahaor]2.0.co;2

    Article  PubMed  Google Scholar 

  26. Hefty AR (2016) Risk of invasion by walnut twig beetle throughout eastern North America. Dissertation, University of Minnesota

  27. Hefty AR, Coggeshall MV, Aukema BH et al (2016) Reproduction of walnut twig beetle in black walnut and butternut. HortTechnology 26:727–734. https://doi.org/10.21273/horttech03427-16

    Article  Google Scholar 

  28. Hefty AR, Seybold SJ, Aukema BH, Venette RC (2017) Cold tolerance of Pityophthorus juglandis (Coleoptera: Scolytidae) from northern California. Environ Entomol 46:967–977. https://doi.org/10.1093/ee/nvx090

    Article  PubMed  Google Scholar 

  29. Herms D, McCullough DG (2014) Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management. Annu Rev Entomol 59:13–30. https://doi.org/10.1146/annurev-ento-011613-162051

    Article  PubMed  CAS  Google Scholar 

  30. Hishinuma SM (2017) Interactions among the walnut twig beetle, Pityophthorus juglandis, the pathogenic fungus, Geosmithia morbida, and host species in thousand cankers disease in California. Dissertation, University of California, Davis

  31. Hishinuma SM, Dallara PL, Yaghmour M et al (2016) Wingnut (Juglandaceae) as a new generic host for Pityophthorus juglandis (Coleoptera: Curculionidae) and the thousand cankers disease pathogen, Geosmithia morbida (Ascomycota: Hypocreales). Can Entomol 148:83–91. https://doi.org/10.4039/tce.2015.37

    Article  Google Scholar 

  32. Hodkinson ID, Hughes MK (1982) Insect herbivory. Chapman and Hall, London

    Google Scholar 

  33. Jacobi WR, Hardin JG, Goodrich BA, Cleaver CM (2012) Retail firewood can transport live tree pests. J Econ Entomol 105:1645–1658. https://doi.org/10.1603/ec12069

    Article  PubMed  CAS  Google Scholar 

  34. Kautz M, Meddens AJH, Hall RJ, Arneth A (2017) Biotic disturbances in Northern Hemisphere forests—a synthesis of recent data, uncertainities, and implications for forest monitoring and modeling. Glob Ecol Biogeogr 26:533–552

    Article  Google Scholar 

  35. Kees AM, Hefty AR, Venette RC et al (2017) Flight capacity of the walnut twig beetle (Coleoptera: Scolytidae) on a laboratory flight mill. Environ Entomol 46:633–641. https://doi.org/10.1093/ee/nvx055

    Article  PubMed  Google Scholar 

  36. Koch FH, Yemshanov D, Colunga-Garcia M et al (2011) Potential establishment of alien-invasive forest insect species in the United States: where and how many? Biol Invasions 13:969–985. https://doi.org/10.1007/s10530-010-9883-8

    Article  Google Scholar 

  37. Kolařík M, Freeland E, Utley C, Tisserat N (2011) Geosmithia morbida sp nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA. Mycologia 103:325–332. https://doi.org/10.3852/10-124

    Article  PubMed  Google Scholar 

  38. Kuznetsova A, Brockhoff B, Christensen HB (2013) lmerTest: tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0-0. http://CRAN.R-project.org/package=lmerTest

  39. Lee JC, Flint ML, Seybold SJ (2008) Suitability of pines and other conifers as hosts for the invasive Mediterranean pine engraver (Coleoptera: Scolytidae) in North America. J Econ Entomol 101:829–837. https://doi.org/10.1603/0022-0493(2008)101[829:sopaoc]2.0.co;2

    Article  PubMed  Google Scholar 

  40. Manning WE (1978) The classification within the Juglandaceae. Ann Missouri Bot Gard 65:1058–1087

    Article  Google Scholar 

  41. Manos PS, Stone DE (2001) Evolution, phylogeny, and systematics of the Juglandaceae. Ann of the Missouri Bot Gard 88:231–269

    Article  Google Scholar 

  42. Martinez ML, Labuckas DO, Lamarque AL, Maestri DM (2010) Walnut (Juglans regia L.): genetic resources, chemistry, by-products. J Sci Food Agric 90:1959–1967

    PubMed  CAS  Google Scholar 

  43. Mayfield AE, Mackenzie M, Cannon PG et al (2013) Suitability of California bay laurel and other species as hosts for the non-native redbay ambrosia beetle and granulate ambrosia beetle. Agric For Entomol 15:227–235. https://doi.org/10.1111/afe.12009

    Article  Google Scholar 

  44. McKee FR, Huber DPW, Aukema BH (2013) Comparisons of mountain pine beetle (Dendroctonus ponderosae Hopkins) reproduction within a novel and traditional host: effects of insect natal history, colonized host species and competitors. Agric For Entomol 15:310–320. https://doi.org/10.1111/afe.12019

    Article  Google Scholar 

  45. Montecchio L, Faccoli M (2014) First record of thousand cankers disease Geosmithia morbida and walnut twig beetle Pityophthorus juglandis on Juglans nigra in Europe. Plant Dis 98:696. https://doi.org/10.1094/pdis-10-13-1027-pdn

    Article  Google Scholar 

  46. Montecchio L, Fanchin G, Simonato M, Faccoli M (2014) First record of thousand cankers disease fungal pathogen Geosmithia morbida and walnut twig beetle Pityophthorus juglandis on Juglans regia in Europe. Plant Dis 98:1445

    Article  Google Scholar 

  47. Newton L, Fowler G (2009) Pathway Assessment: Geosmithia sp. and Pityophthorus juglandis Blackman movement from the western into the eastern United States. United States Department of Agriculture Animal and Plant Health Inspection Service, 1-50, Washington, D.C., Rev. 1: 10.19.2009. http://mda.mo.gov/plants/pdf/tc_pathwayanalysis.pdf. 24 April 2016

  48. Økland B, Erbilgin N, Skarpaas O et al (2011) Inter-species interactions and ecosystem effects of non-indigenous invasive and native tree-killing bark beetles. Biol Invasions 13:1151–1164. https://doi.org/10.1007/s10530-011-9957-2

    Article  Google Scholar 

  49. Orel G, Marchant AD, McLeod JA, Richards GD (2003) Characterization of 11 Juglandaceae genotypes based on morphology, cpDNA, and RAPD. Hortscience 38:1178–1183

    CAS  Google Scholar 

  50. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  51. Ramirez N (2015) Chile’s tree nuts annual report 2015. USDA Foreign Agricultural Service. GAIN Report Number: CI1523

  52. RIRDC [Rural Industries Research and Development Corporation] (2017) Walnuts. Farmdiversity. http://www.farmdiversity.com.au/Plant/0a7311a0-bdba-43ff-bbb5-a43600d1f1c8

  53. Rugman-Jones PF, Seybold SJ, Graves AD, Stouthamer R (2015) Phylogeography of the walnut twig beetle, Pityophthorus juglandis, the vector of thousand cankers disease in North American walnut trees. PLoS ONE 10:1–28. https://doi.org/10.1371/journal.pone.0118264

    Article  CAS  Google Scholar 

  54. Serdani M, Vlach JJ, Wallis KL et al (2013) First report of Geosmithia morbida and Pityophthorus juglandis causing thousand cankers disease in butternut. Plant Heal Prog. https://doi.org/10.1094/php-2009-0811-01-rs.4

    Article  Google Scholar 

  55. Seybold SJ, Haugen D, O’Brien J, Graves AD (2013) Thousand cankers disease. USDA Forest Service, Northeastern Area State and Private Forestry Pest Alert, NA-PR-02-10, 2 pp. http://www.na.fs.fed.us/pubs/detail.cfm?id=5225. Accessed 24 Mar 2016

  56. Seybold SJ, Penrose RL, Graves AD (2016) Invasive bark and ambrosia beetles in California Mediterranean forest systems. In: Paine TD, Lieutier F (eds) Insects and diseases of Mediterranean forest systems. Springer International, Cham, pp 583–662

    Google Scholar 

  57. Sotomayor C, Castro J (2004) Rootstocks used for fruit crops in Chile: an overview. Acta Hortic 658:287–291

    Article  Google Scholar 

  58. Stanford AM, Harden R, Parks CR (2000) Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data. Am J Bot 87:872–882

    Article  PubMed  CAS  Google Scholar 

  59. Švihra P, Volney WJA (1983) Effect of English, Siberian, and Chinese elms on the attack behavior and brood survival of Scolytus multistriatus (Coleoptera: Scolytidae). Can Entomol 115:513–522

    Article  Google Scholar 

  60. Tisserat N, Cranshaw W, Leatherman D et al (2009) Black walnut mortality in Colorado caused by the walnut twig beetle and thousand cankers disease. Plant Health Prog. https://doi.org/10.1094/php-2009-0811-01-rs

    Article  Google Scholar 

  61. Tisserat N, Cranshaw W, Putnam M et al (2011) Thousand cankers disease is widespread in black walnut in the western United States. Plant Health Prog. https://doi.org/10.1094/php-2011-0630-01-br.black

    Article  Google Scholar 

  62. Umeda C, Eskalen A, Paine TD (2016) Polyphagous shot hole borer and Fusarium dieback in California. In: Paine TD, Lieutier F (eds) Insects and diseases of Mediterranean forest systems. Springer International, Cham, pp 757–767

    Google Scholar 

  63. Utley C, Nguyen T, Roubtsova T et al (2013) Susceptibility of walnut and hickory species to Geosmithia morbida. Plant Dis 97:601–607. https://doi.org/10.1094/pdis-07-12-0636-re

    Article  Google Scholar 

  64. Venette RC, Kriticos DJ, Magarey R et al (2010) Pest risk maps for invasive alien species: a roadmap for improvement. BioScience 60:349–362

    Article  Google Scholar 

  65. Walter AJ, Venette RC, Kells SA (2010) Acceptance and suitability of novel trees for Orthotomicus erosus, an exotic bark beetle in North America. Biol Invasions 12:1133–1144. https://doi.org/10.1007/s10530-009-9531-3

    Article  Google Scholar 

  66. Wood DL (1982) The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annu Rev Entomol 27:411–446

    Article  CAS  Google Scholar 

  67. Wood SL, Bright DE Jr (1992) A catalog of Scolytidae and Platypodidae (Coleoptera), part 2: Taxonomic Index, Volume B. Great Basin Nat 13:1553

    Google Scholar 

  68. Yaghmour MA, Nguyen TL, Roubtsova TV et al (2014) First report of Geosmithia morbida on English walnut and its Paradox rootstock in California. Plant Dis 98:1441

    Article  Google Scholar 

  69. Yemshanov D, Koch FH, Ducey M, Koehler K (2012) Trade-associated pathways of alien forest insect entries in Canada. Biol Invasions 14:797–812. https://doi.org/10.1007/s10530-011-0117-5

    Article  Google Scholar 

  70. Zhao P, Woeste KE (2011) DNA markers identify hybrids between butternut (Juglans cinerea L.) and Japanese walnut (Juglans ailantifolia Carr.). Tree Genet Genomes 7:511–533. https://doi.org/10.1007/s11295-010-0352-4

    Article  Google Scholar 

Download references

Acknowledgements

We thank Charles Leslie, Department of Plant Sciences, University of California, Davis, CA; John Preece, USDA ARS NCGR, Davis, CA; Andrew D. Graves and James Jacobs, USDA Forest Service Forest Health Protection, Albuquerque, NM; Minnette Marr, Lady Bird Johnson Wildflower Center, Austin, TX; and the University of Minnesota Landscape Arboretum, Chaska, MN for assistance with procuring host material for testing. We thank Cliff Beumel, Director of Product Development, Sierra Gold Nurseries, Yuba City, CA for access to a commercial walnut seed orchard for collection of walnut twig beetles; J. Preece for access to the USDA ARS NCGR for the same purpose; and University of Minnesota undergraduate research assistants, Joe Pohnan and Collin Smith. We also thank Carlos H. Crisosto and Sebastian S. Silva (both Department of Plant Sciences, University of California, Davis) for providing information on walnut production in South America. We greatly appreciate the staff at the MDA/MAES Plant Growth Facility for support with biocontainment. Funding was provided by the NSF-IGERT Risk Analysis of Introduced Species and Genotypes program at the University of Minnesota (DGE-0653827) and a USDA-Forest Service Special Technology Development Program grant (R2-2012-01) that was administered by Jeffrey Witcosky and Stephanie Stephens, USDA Forest Service, Lakewood, CO. Participation of MVC and SJS in this project was coordinated and supported by USDA National Institute of Food and Agriculture, Specialty Crops Research Initiative Program Project (11684658), “Development of Disease-resistant Walnut Rootstocks: Integration of Conventional and Genomic Approaches.”

Author information

Affiliations

Authors

Contributions

ARH, RCV, BHA, MVC, JRM, and SJS all contributed to the experimental design of host assays. ARH performed all assays. ARH, BHA, and RCV analyzed the data. SJS, MVC, and JRM provided host material. SJS provided insects. ARH, BHA, RCV, and SJS wrote the manuscript; other authors provided editorial advice.

Corresponding author

Correspondence to Andrea R. Hefty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hefty, A.R., Aukema, B.H., Venette, R.C. et al. Reproduction and potential range expansion of walnut twig beetle across the Juglandaceae. Biol Invasions 20, 2141–2155 (2018). https://doi.org/10.1007/s10530-018-1692-5

Download citation

Keywords

  • Host-range expansion
  • Host suitability
  • Pityophthorus juglandis
  • Thousand cankers disease
  • Juglans