Skip to main content

Where vectors collide: the importance of mechanisms shaping the realized niche for modeling ranges of invasive Aedes mosquitoes

Abstract

The vector mosquitoes Aedes aegypti (L.), native to Africa, and Aedes albopictus (Skuse), native to Asia, are widespread invasives whose spatial distributions frequently overlap. Predictive models of their distributions are typically correlative rather than mechanistic, and based on only abiotic variables describing putative environmental requirements despite extensive evidence of competitive interactions leading to displacements. Here we review putative roles of competition contributing to distribution changes where the two species meet. The strongest evidence for competitive displacements comes from multiple examples of habitat segregation where the two species co-occur and massive reductions in the range and abundance of A. aegypti attributable to A. albopictus invasions in the southeastern U.S.A. and Bermuda (U.K). We summarize evidence to support the primacy of asymmetric reproductive interference, or satyrization, and larval resource competition, both favoring A. albopictus, as displacement mechanisms. Where evidence of satyrization or interspecific resource competition is weak, differences in local environments or alternative ecologies or behaviors of these Aedes spp. may explain local variation in the outcomes of invasions. Predictive distribution modeling for both these major disease vectors needs to incorporate species interactions between them as an important process that is likely to limit their realized niches and future distributions. Experimental tests of satyrization and resource competition are needed across the broad ranges of these species, as are models that incorporate both reproductive interference and resource competition to evaluate interaction strengths and mechanisms. These vectors exemplify how fundamental principles of community ecology may influence distributions of invasive species.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Almeida APG, Batista SSSG, Sousa CAGCC (2005) Bioecology and vectorial capacity of Aedes albopictus (Diptera: Culicidae) in Macao, China, in relation to dengue virus transmission. J Med Entomol 42:419–428

    PubMed  Article  Google Scholar 

  2. Alto BW, Juliano SA (2001) Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. J Med Entomol 38:646–656

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Anderson R, Peterson AT, Gómez-Laverde M (2002) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98:3–16

    Article  Google Scholar 

  4. Bagny L, Delatte H, Quilici S, Fontenille D (2009a) Progressive decrease in Aedes aegypti distribution in Reunion Island since the 1900s. J Med Entomol 46:1541–1545

    PubMed  Article  Google Scholar 

  5. Bagny L, Delatte H, Elissa N, Quilici S, Fontenille D (2009b) Aedes (Diptera: Culicidae) vectors of arboviruses in Mayotte (Indian Ocean): distribution area and larval habitats. J Med Entomol 46:198–207

    PubMed  Article  Google Scholar 

  6. Bargielowski IE, Lounibos LP (2014) Rapid evolution of reduced receptivity to interspecific mating in the dengue vector Aedes aegypti in response to satyrization by invasive Aedes albopictus. Evol Ecol 28:193–203

    PubMed  Article  CAS  Google Scholar 

  7. Bargielowski IE, Lounibos LP (2016) Satyrization and satyrization-resistance in competitive displacements of invasive mosquito species. Insect Sci 23:162–174

    PubMed  Article  Google Scholar 

  8. Bargielowski IE, Lounibos LP, Carrasquilla MC (2013) Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. Proc Natl Acad Sci 110:2888–2892

    PubMed  Article  Google Scholar 

  9. Bargielowski IE, Lounibos LP, Shin D, Smartt CT, Carrasquilla MC, Henry A, Navarro JC, Paupy C, Dennett JA (2015a) Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature. Inf Gen Evol 36:456–461

    Article  CAS  Google Scholar 

  10. Bargielowski IE, Blosser E, Lounibos LP (2015b) The effects of interspecific courtship on the mating success of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) males. Ann Entomol Soc Amer 108:513–518

    PubMed  Article  Google Scholar 

  11. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vect-Bor Zoon Dis 7:76–85

    Article  Google Scholar 

  12. Birungi J, Munstermann LE (2002) Genetic structure of Aedes albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: evidence for an independent invasion into Brazil and the United States. Ann Entomol Soc Am 95:126–132

    Article  Google Scholar 

  13. Bonsall MB, Yakob L, Alphey N, Alphey L (2010) Transgenic control of vectors: the effects of interspecific interactions. Israel J Ecol Evol 56:353–370

    Article  Google Scholar 

  14. Burford Reiskind M, Labadie P, Bargielowski I, Lounibos P, Reiskind M (submitted) Rapid evolution and the genomic consequences of selection against interspecific mating. Molec Ecol

  15. Braks MAH, Honorio NA, Lourenco-de-Oliveira R, Juliano SA, Lounibos LP (2003) Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida, USA. J Med Entomol 40:785–794

    PubMed  Article  Google Scholar 

  16. Braks MAH, Honorio NA, Lourenco-de-Oliveira R, Lounibos LP, Juliano SA (2004) Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann Entomol Soc Am 97:130–139

    Article  Google Scholar 

  17. Brown JE, Evans BR, Zheng W et al (2014) Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 68:514–525

    PubMed  Article  CAS  Google Scholar 

  18. Cadotte MW (2006) Darwin to Elton: early ecology and the problem of invasive species. In: Cadotte MW, McMahon SM, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches. Springer, Dordrecht, pp 15–33

    Chapter  Google Scholar 

  19. Camara DCP, Codeço CT, Juliano SA, Lounibos LP, Riback TIS, Pereira GR, Honorio NA (2016) Seasonal differences in density but similar competitive impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil. PLoS One 11(6):e0157120

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Carrasquilla MC, Lounibos LP (2015) Satyrization without evidence of successful insemination from interspecific mating between invasive mosquitoes. Biol Lett 11:20150527

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Carvajal Cortes JJ (2013) Variação espacial e temporal dos vetores do Dengue Aedes (Stegomyia) albopictus (Skuse, 1894) e Aedes (Stegomyia) aegypti (Linnaeus, 1762) na área urbana do município de Letícia, (Amazonas-Colômbia) e sua associação com a transmissão do Dengue na tríplice fronteira Amazônica (Colômbia-Brasil-Peru) 2013 MSc Thesis, Inst. Osw. Cruz, Rio de Janeiro

  22. Chase JM, Leibold MA (2003) Ecological niches. Linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  23. Chaves LF (2016) Globally invasive, withdrawing at home: Aedes albopictus and Aedes japonicus facing the rise of Aedes flavopictus. Int J Biometeor. https://doi.org/10.1007/s00484-016-1162-7

    Article  Google Scholar 

  24. Colautti R, Ricciardi A, Grigorovich I, MacIsaac H (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733

    Article  Google Scholar 

  25. Costanzo KS, Kesavaraju B, Juliano SA (2005) Condition-specific competition in container mosquitoes: the role of non-competing life-history stages. Ecology 86:3289–3295

    PubMed  PubMed Central  Article  Google Scholar 

  26. Craig GB (1993) The diaspora of the Asian tiger mosquito. In: McKnight B (ed) Biological pollution: the control and impact of invasive exotic species. Indiana Academy of Sciences, Indianapolis, pp 101–120

    Google Scholar 

  27. Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786

    PubMed  Article  CAS  Google Scholar 

  28. Delatte H, Desvars A, Bouétard A et al (2010) Blood-feeding behavior of Aedes albopictus, a vector of chikungunya on La Reunion. Vect-Bor Zoon Dis 10:249–258

    Article  Google Scholar 

  29. Ding F, Fu J, Jiang L, Hao M (2018) Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Trop 178:155–162

    PubMed  Article  Google Scholar 

  30. Eisen L, Moore CG (2013) Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. J Med Entomol 50:467–478

    PubMed  Article  Google Scholar 

  31. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Ann Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  32. Elton CS (1927) Animal ecology. The MacMillan Company, New York

    Google Scholar 

  33. Elton CS (1958) The ecology of invasions of animals and plants. Methuen, London

    Book  Google Scholar 

  34. Fontenille D, Rodhain F (1989) Biology and distribution of Aedes albopictus and Aedes aegypti in Madagascar. J Am Mosq Cont Assoc 5:219–225

    CAS  Google Scholar 

  35. Gao Y, Reitz SR (2017) Emerging themes in our understanding of species displacements. Ann Rev Entomol 62:165–183

    Article  CAS  Google Scholar 

  36. Giller PS (1984) Community structure and the niche. Chapman and Hall, London

    Book  Google Scholar 

  37. Gilotra SK, Rozeboom LE, Bhattacharya NC (1967) Observations on possible competitive displacement between populations of Aedes aegypti Linnaeus and Aedes albopictus Skuse in Calcutta. Bull Wld Hlth Org 37:437–446

    CAS  Google Scholar 

  38. Gröning J, Hochkirch A (2008) Reproductive interference between animal species. Q Rev Biol 83:257–282

    PubMed  Article  Google Scholar 

  39. Grover JP (1997) Resource competition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Grubaugh ND, Ladner JT, Kraemer MUG et al (2017) Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546:401–409

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. Hahn MB, Eisen RJ, Eisen L et al (2016) Reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995–2016 (Diptera: Culicidae). J Med Entomol. https://doi.org/10.1093/jme/tjw072

    PubMed Central  Article  PubMed  Google Scholar 

  42. Harper JP, Paulson SL (1994) Reproductive isolation between Florida strains of Aedes aegypti and Aedes albopictus. J Am Mosq Cont Assoc 10:88–92

    CAS  Google Scholar 

  43. Hawley WA, Reiter P, Copeland RS et al (1987) Aedes albopictus in North America: probable introduction in used tires from Northern Asia. Science 236:1114–1116

    PubMed  Article  CAS  Google Scholar 

  44. Higa Y, Thi Yen N, Kawada H et al (2010) Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam. J Am Mosq Cont Assoc 26:1–9

    Article  Google Scholar 

  45. Hobbs JH, Hughes EA, Eichold BH (1991) Replacement of Aedes aegypti by Aedes albopictus in Mobile, Alabama. J Am Mosq Cont Assoc 7:488–489

    CAS  Google Scholar 

  46. Honório NA, Carrasquilla MC, Bargielowski I et al (2017) Male origin determines satyrization potential of Aedes aegypti by invasive Aedes albopictus. Biol Invas. https://doi.org/10.1007/s10530-017-1565-3

    Article  Google Scholar 

  47. Hopperstad KA, Reiskind MH (2016) Recent changes in the local distribution of Aedes aegypti L. (Diptera: Culicidae) in south Florida, USA. J Med Entomol 53:836–842

    PubMed  Article  CAS  Google Scholar 

  48. Hufbauer RA, Facon B, Ravigné V et al (2012) Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol Appl 5:89–101

    PubMed  Article  Google Scholar 

  49. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quanti Biol 22:415–427

    Article  Google Scholar 

  50. Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New Haven

    Google Scholar 

  51. Ishak H, Miyagi I, Toma T et al (1997) Breeding habitats of Aedes aegypti (L.) and Aedes albopictus (Skuse) in village of Barru, South Sulawesi, Indonesia. SE Asia Trop Med Pub Hlth 28:844–850

    CAS  Google Scholar 

  52. Juliano SA (1998) Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition? Ecology 79:255–268

    Article  Google Scholar 

  53. Juliano SA (2009) Species interactions among larval mosquitoes: Context dependence across habitat gradients. Ann Rev Entomol 54:37–56

    Article  CAS  Google Scholar 

  54. Juliano SA (2010) Coexistence, exclusion, or neutrality? a meta-analysis of competition between Aedes albopictus and resident mosquitoes. Isr J Ecol Evol 56:325–351

    PubMed  Article  Google Scholar 

  55. Juliano SA, Lounibos LP (2016) Invasions by mosquitoes: the roles of behaviour across the life cycle. In: Weis JS, Sol D (eds) Biological invasions and animal behaviour. Cambridge University Press, Cambridge, pp 245–265

    Chapter  Google Scholar 

  56. Juliano SA, Lounibos LP, O′Meara GF (2004) A field test for competitive effects of Aedes albopictus on Aedes aegypti in South Florida: differences between sites of coexistence and exclusion? Oecologia 139:583–593

    PubMed  PubMed Central  Article  Google Scholar 

  57. Juliano SA, O’Meara GF, Morrill JR, Cutwa MM (2002) Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130:458–469

    PubMed  PubMed Central  Article  Google Scholar 

  58. Kamgang B, Ngoagouni C, Manirakiza A, Nakouné E, Paupy C, Kazanji M (2013) Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA analysis of Ae. albopictus in the Central African Republic. PLoS Negl Trop Dis 7(12):e2590. https://doi.org/10.1371/journal.pntd.0002590

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  59. Kaplan L, Kendell D, Robertson D, Livdahl T, Khatchikian C (2010) Aedes aegypti and Aedes albopictus in Bermuda: extinction, invasion and extinction. Biol Invas 12:3277–3288

    Article  Google Scholar 

  60. Kearney M (2006) Habitat, environment and niche: what are we modelling? Oikos 115:186–191

    Article  Google Scholar 

  61. Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    PubMed  Article  Google Scholar 

  62. Kearney M, Porter WP, Williams C, Ritchie S, Hoffmann AA (2009) Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol 23:528–538

    Article  Google Scholar 

  63. Kishi S, Nakazawa T (2013) Analysis of species coexistence co-mediated by resource competition and reproductive interference. Pop Ecol 55:305–313

    Article  Google Scholar 

  64. Kraemer MUG, Sinka MA, Duka KA et al (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4:e08347

    PubMed  PubMed Central  Article  Google Scholar 

  65. Lambrecht FL (1971) Notes on the ecology of Seychelles mosquitoes. Bull Entomol Res 60:513–532

    Article  Google Scholar 

  66. Le Goff G, Brengues C, Robert V (2013) Stegomyia mosquitoes in Mayotte, taxonomic study and description of Stegomyia pia n. sp. Parasite. https://doi.org/10.1051/parasite/2013030

    PubMed  PubMed Central  Article  Google Scholar 

  67. Leathwick JR, Austin MP (2001) Competitive interactions between tree species in New Zealand’s old-growth indigenous forests. Ecology 82:2560–2573

    Article  Google Scholar 

  68. Lees RS, Gilles JR, Hendrichs J, Vreysen MJ, Bourtzis K (2015) Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci 10:156–162

    PubMed  Article  Google Scholar 

  69. Leisnham PT, Juliano SA (2009) Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida. Oecologia 160:343–352

    PubMed  PubMed Central  Article  Google Scholar 

  70. Leisnham PT, Juliano SA (2010) Interpopulation differences in competitive effect and response of the mosquito Aedes aegypti and resistance to invasion of a superior competitor. Oecologia 164:221–230

    PubMed  PubMed Central  Article  Google Scholar 

  71. Leisnham PT, Lounibos LP, O’Meara GF, Juliano SA (2009) Interpopulation divergence in competitive interactions of the mosquito Aedes albopictus. Ecology 90:2405–2413

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Li Y, Kamara F, Zhou G et al (2014) Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis 8:e3301

    PubMed  PubMed Central  Article  Google Scholar 

  73. Lounibos LP (1981) Habitat segregation in African treehole mosquitoes. Ecol Entomol 6:129–154

    Article  Google Scholar 

  74. Lounibos LP (2002) Invasions by insect vectors of disease. Ann Rev Entomol 47:233–266

    Article  CAS  Google Scholar 

  75. Lounibos LP, Nishimura N, Escher RL (1993) Fitness of a treehole mosquito: influences of food type and predation. Oikos 66:114–118

    Article  Google Scholar 

  76. Lounibos LP, O’Meara GF, Juliano SA, Nishimura N, Escher RL, Reiskind MH, Cutwa M, Greene K (2010) Differential survivorship of invasive mosquito species in south Florida cemeteries: do site-specific microclimates explain patterns of coexistence and exclusion? Ann Entomol Soc Am 103:757–770

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. Lounibos LP, Bargielowski I, Carrasquilla MC, Nishimura N (2016) Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in peninsular Florida two decades after competitive displacements. J Med Entomol. https://doi.org/10.1093/jme/tjw122

    Article  PubMed  Google Scholar 

  78. MacArthur RH, Wilson EO (1973) The theory of island biogeography. Princeton Monographs in Population Biology, Princeton

    Google Scholar 

  79. MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615

    Article  Google Scholar 

  80. Manni M, Guglielmino CR, Scolari F et al (2017) Genetic evidence for a worldwide chaotic dispersion pattern of the arbovirus vector, Aedes albopictus. PLoS Negl Trop Dis 11(1):e0005332

    PubMed  PubMed Central  Article  Google Scholar 

  81. Mattingly PF (1967) Taxonomy of Aedes aegypti and related species. Bull World Health Org 36:552–554

    PubMed  CAS  Google Scholar 

  82. Mattingly PF, Brown ES (1955) The mosquitos (Diptera, Culicidae) of the Seychelles. Bull Entomol Res 46:69–110

    Article  Google Scholar 

  83. Medley KA (2010) Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob Ecol Biog 19:122–133

    Article  Google Scholar 

  84. Mekuria Y, Hyatt MG (1995) Aedes albopictus in South Carolina. J Am Mosq Cont Assoc 11:468–470

    CAS  Google Scholar 

  85. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN et al (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740

    PubMed  Article  Google Scholar 

  86. Mogi M, Khamboonruang C, Choochote W, Suwanpanit P (1988) Ovitrap surveys of dengue vector mosquitoes in Chiang Mai, northern Thailand—seasonal shifts in relative abundance of Aedes albopictus and Aedes aegypti. Med Vet Entomol 2:319–324

    PubMed  Article  CAS  Google Scholar 

  87. Monaghan AJ, Morin CW, Steinhoff DF et al (2016) On the seasonal occurrence and abundance of the Zika virus vector mosquito Aedes aegypti in the contiguous United States. PLoS Curr Outbr 16:8

    Google Scholar 

  88. Moore CG (1999) Aedes albopictus in the United States: current status and prospects for further spread. J Am Mosq Control Assoc 15:221–227

    PubMed  CAS  Google Scholar 

  89. Morlan HB, Tinker ME (1965) Distribution of Aedes aegypti infestations in the United States. Am J Trop Med Hyg 14:892–899

    PubMed  Article  CAS  Google Scholar 

  90. Murrell EG, Juliano SA (2008) Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 45:375–383

    PubMed  PubMed Central  Article  Google Scholar 

  91. Murrell EG, Juliano SA (2012) Competitive abilities in experimental microcosms are accurately predicted by a demographic index for R*. PLoS One 7(9):e43458. https://doi.org/10.1371/journal.pone.0043458

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  92. Murrell EG, Damal K, Lounibos LP, Juliano SA (2011) Distributions of competing container mosquitoes depend on detritus types, nutrient ratios, and food availability. Ann Entomol Soc Am 104:688–698

    PubMed  PubMed Central  Article  Google Scholar 

  93. Nasci RS, Hare CG, Willis FS (1989) Interspecific mating between Louisiana strains of Aedes albopictus and Aedes aegypti in the field and the laboratory. J Am Mosq Cont Assoc 5:416–421

    CAS  Google Scholar 

  94. O’Meara GF, Evans LF, Gettman AD, Cuda JP (1995) Spread of Aedes albopictus and decline of Ae. aegypti (Diptera:Culicidae) in Florida. J Med Entomol 32:554–562

    PubMed  Article  Google Scholar 

  95. O’Neal PA, Juliano SA (2013) Seasonal variation in competition and coexistence of Aedes mosquitoes: stabilizing effects of egg mortality or equalizing effects of resources? J Anim Ecol 82:256–265. https://doi.org/10.1111/j.1365-2656.2012.02017

    PubMed  Article  Google Scholar 

  96. Paupy C, Ollomo B, Kamgang B et al (2010) Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue in Central Africa. Vector-Borne Zoon Dis 10:259–266

    Article  Google Scholar 

  97. Pellissier L, Pradervand JN, Pottier J, Dubois A, Maiorano L, Guisan A (2012) Climate-based empirical models show biased predictions of butterfly communities along environmental gradients. Ecography 35:1–9

    Article  Google Scholar 

  98. Proestos Y, Christophides GK, Ergüler K, Tanarhte M, Waldock J, Lelieveld J (2015) Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation. Philos Trans R Soc B 370:20130554

    Article  Google Scholar 

  99. Raharimala FN, Ravaomanarivo LH, Ravelonandro P et al (2012) Biogeography of the major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Madagascar. Parasit Vector 5:56

    Article  Google Scholar 

  100. Ratsitorahina M, Harisoa J, Ratovonjato J et al (2008) Outbreak of dengue and Chikungunya fevers, Toamasina, Madagascar. Emerg Inf Dis 14:1135–1137

    Article  Google Scholar 

  101. Reiskind MH, Lounibos LP (2013) Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida. Med Vet Entomol 27:421–429

    PubMed  Article  CAS  Google Scholar 

  102. Reiskind MH, Zarrabi AA, Lounibos LP (2012) Effects of combination of leaf resources on competition in container mosquito larvae. Bull Entomol Res 102:424–434

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Reiter P (1998) Aedes albopictus and world trade in used tires, 1988–1995: the shape of things to come? J Am Mosq Cont Assoc 14:83–94

    CAS  Google Scholar 

  104. Reiter P, Lathrop S, Bunning M (2003) Texas lifestyle limits transmission of dengue virus. Emer Inf Dis 9:86–89

    Article  Google Scholar 

  105. Reitz SR, Trumble JT (2002) Competitive displacement among insects and arachnids. Annu Rev Entomol 47:435–465

    PubMed  Article  CAS  Google Scholar 

  106. Rey JR, Nishimura N, Wagner B, Braks MA, O’Connell SM, Lounibos LP (2006) Habitat segregation of mosquito arbovirus vectors in south Florida. J Med Entomol 43:1134–1141

    PubMed  PubMed Central  Article  Google Scholar 

  107. Ribeiro JMC (1988) Can satyrs control pests and vectors? J Med Entomol 25:431–440

    PubMed  Article  CAS  Google Scholar 

  108. Richardson DM (ed) (2011) Fifty years of invasion ecology: the legacy of Charles Elton. Wiley, Oxford

    Google Scholar 

  109. Rochlin I, Ninivaggi DV, Hutchinson ML, Farajollahi A (2013) Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in northeastern USA: implications for public health practitioners. PLoS One 8(4):e60874. https://doi.org/10.1371/journal.pone.0060874

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  110. Rudnick A (1965) Studies of the ecology of dengue in Malaysia: a preliminary report. J Med Entomol 2:203–208

    PubMed  Article  CAS  Google Scholar 

  111. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  112. Simard F, Nchoutpouen E, Toto C, Fontenille D (2005) Geographic distribution and breeding site preference of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) in Cameroon, Central Africa. J Med Entomol 42:726–731

    PubMed  Article  Google Scholar 

  113. Smith CEG (1956) The history of dengue in tropical Asia and its probable relationship to the mosquito Aedes aegypti. J Trop Med Hyg 59:243–251

    PubMed  CAS  Google Scholar 

  114. Soberón J (2007) Grinnellian and Eltonian niches and the geographic distributions of species. Ecol Lett 10:1115–1123

    PubMed  Article  Google Scholar 

  115. Sota T, Mogi M (1992) Survival time and resistance to desiccation of diapause and non-diapause eggs of temperate Aedes (Stegomyia) mosquitoes. Entomol Exp Appl 63:155–161

    Article  Google Scholar 

  116. Stanton AT (1920) The mosquitos of far eastern ports with special reference to Stegomyia fasciata, F. Bull Entomol Res 10:333–344

    Article  Google Scholar 

  117. Tabachnick WJ (1991) Evolutionary genetics and arthropod-borne disease. The yellow fever mosquito. Am Entomol 37:14–24

    Article  Google Scholar 

  118. Thomas SM, Fischer D, Fleischmann S, Bittner T, Beierkuhnlein C (2011) Risk assessment of dengue virus amplification in Europe based on spatial-temporal high resolution climate change projections. Erkunde 65:137–150

    Article  Google Scholar 

  119. Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  120. Tripet F, Lounibos LP, Robbins D, Moran J, Nishimura N, Blosser EM (2011) Competitive reduction by satyrization? Evidence for interspecific mating in nature and asymmetric reproductive competition between invasive mosquito vectors. Am J Trop Med Hyg 85:265–270

    PubMed  PubMed Central  Article  Google Scholar 

  121. Tsuda Y, Suwonkerd W, Chawprom S et al (2006) Different spatial distribution of Aedes aegypti and Aedes albopictus along an urban-rural gradient and the relating environmental factors examined in three villages in northern Thailand. J Am Mosq Cont Assoc 22:222–228

    Article  Google Scholar 

  122. Urbanski J, Mogi M, O’Donnell D et al (2012) Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am Nat 179:490–500

    PubMed  Article  Google Scholar 

  123. Vazeille M, Moutailler S, Coudrier D et al (2007) Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito Aedes albopictus. PLoS One 2:e1168

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. Vázquez DP (2006) Exploring the relationship between niche breadth and invasion success. In: Cadotte MW, McMahon SM, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches. Springer, Dordrecht, pp 307–322

    Chapter  Google Scholar 

  125. Vélez ID, Quiñones M, Suárez M et al (1998) Presencia de Aedes albopictus en Leticia, Amazonas, Colombia. Biomédica 18:192–198

    Article  Google Scholar 

  126. Walsh RK, Facchinelli L, Ramsey JM, Bond JG, Gould F (2011) Assessing the impact of density dependence in field populations of Aedes aegypti. J Vect Ecol 36:300–307

    Article  CAS  Google Scholar 

  127. Walsh RK, Bradley C, Apperson CS, Gould F (2012) An experimental field study of delayed density dependence in natural populations of Aedes albopictus. PLoS One 7:3–8. https://doi.org/10.1371/journal.pone.0035959

    CAS  Article  Google Scholar 

  128. Walsh RK, Aguilar CL, Facchinelli L, Valerio L, Ramsey JM, Scott TW, Lloyd AL, Gould F (2013) Regulation of Aedes aegypti population dynamics in field systems: quantifying direct and delayed density dependence. Am J Trop Med Hyg 89:68–77

    PubMed  PubMed Central  Article  Google Scholar 

  129. Whittaker RH, Levin SA, Root RB (1973) Niche, habitat, and ecotope. Am Nat 107:321–338

    Article  Google Scholar 

  130. Winchester JC, Kapan DD (2013) History of Aedes mosquitoes in Hawaii. J Am Mosq Cont Assoc 29:154–163

    Article  Google Scholar 

  131. Wisz MS, Pottier J, Kissling WD et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30

    PubMed  Article  Google Scholar 

  132. Wu J-Y, Lun J-R, James AA et al (2010) Review: dengue fever in mainland China. Am J Trop Med Hyg 83:664–671

    PubMed  PubMed Central  Article  Google Scholar 

  133. Yang CF, Hou JN, Chen TH, Chen WJ (2014) Discriminable roles of Aedes aegypti and Aedes albopictus in establishment of dengue outbreaks in Taiwan. Acta Trop 130:17–23

    PubMed  Article  Google Scholar 

  134. Yee DA, Kaufman MG, Juliano SA (2007) The significance of ratios of detritus types and micro-organism productivity to competitive interactions between aquatic insect detritivores. J Anim Ecol 76:1105–1115

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors were supported during the writing of this review by US National Institute of Allergy & Infectious Disease Grant R21AI095780 to LPL and US National Institute of Allergy & Infectious Disease Grant R15AI124005 to SAJ. We thank VA Borowicz for useful comments on earlier drafts, and an anonymous referee, and D. Simberloff for additional valuable comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Philip Lounibos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lounibos, L.P., Juliano, S.A. Where vectors collide: the importance of mechanisms shaping the realized niche for modeling ranges of invasive Aedes mosquitoes. Biol Invasions 20, 1913–1929 (2018). https://doi.org/10.1007/s10530-018-1674-7

Download citation

Keywords

  • Aedes aegypti
  • Aedes albopictus
  • Resource competition
  • Distribution modeling
  • Reproductive interference
  • Realized/fundamental niche