Skip to main content

Advertisement

Log in

The widespread and overlooked replacement of Spartina maritima by non-indigenous S. anglica and S. townsendii in north-western Adriatic saltmarshes

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Non-native Spartina spp. have invaded many coastal saltmarshes worldwide. Introduced Spartina may cause problems like displacement of native vegetation and hybridisation with native species, leading to changes to relevant ecosystem services and saltmarsh geomorphology. Here we report the extensive and so far overlooked replacement of the native Spartina maritima by non-native S. anglica and S. townsendii along 400 km of the coast of the north-western Adriatic Sea (Mediterranean Sea). We analysed the distribution of both native and non-native Spartina spp. along the six main saltmarsh areas in the region, and produced maps of their presence by using a combination of genetic tools, morphological analysis and geotagged photographs, complemented with field observations. We also reviewed historical herbaria from the region to explore when the first non-native introductions could have occured. We found that S. anglica and S. townsendii are unexpectedly widespread, having established along the whole study region, in one lagoon totally replacing the local native species. Its introduction happened virtually unnoticed, and misidentified herbarium specimens date back as early as 1987. We discuss the ecological implications of this overlooked extensive replacement, and the need for a comprehensive assessment of the status of the saltmarshes in this region, both to protect the few remaining patches of the native S. maritima and control the spread of the non-native species across the Mediterranean Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Photos: Merloni, N.

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aikio S, Duncan RP, Hulme PE (2010) Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119:370–378

    Article  Google Scholar 

  • Airoldi L, Beck MW (2007) Loss, status and trends for coastal marine habitats of Europe. Oceanogr Mar Biol Annu Rev 45:345–405

    Google Scholar 

  • An SQ, Gu BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Li HL, Chen L, Yu DH, Liu YH (2007) Spartina invasion in China: implications for invasive species management and future research. Weed Res 47:183–191

    Article  Google Scholar 

  • Atlante della Laguna (2016) Progetto LIFE VIMINE. URL http://cigno.atlantedellalaguna.it/maps/1576. Accessed 27 Apr 2017

  • Ayers DR, Smith DL, Zaremba K, Klohr S, Strong DR (2004) Spread of exotic cordgrasses and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA. Biol Invasions 6:221–231

    Article  Google Scholar 

  • B.C. Spartina Working Group (2015) British Columbia Spartina Eradication Program Progress Report 2015, p 37

  • Balke T, Klaassen PC, Garbutt A, Van der Wal D, Herman PMJ, Bouma TJ (2012) Conditional outcome of ecosystem engineering: a case study on tussocks of the salt marsh pioneer Spartina anglica. Geomorphology 153–154:232–238

    Article  Google Scholar 

  • Barney JN (2006) North American history of two invasive plant species: phytogeographic distribution, dispersal vectors, and multiple introductions. Biol Invasions 8:703–717

    Article  Google Scholar 

  • Bauer JT (2012) Invasive species: “back-seat drivers” of ecosystem change? Biol Invasions 14:1295–1304

    Article  Google Scholar 

  • Baumel A, Ainouche ML, Levasseur JE (2001) Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France). Mol Ecol 10:1689–1701

    Article  PubMed  CAS  Google Scholar 

  • Baumel A, Ainouche ML, Bayer RJ, Ainouche AK, Misset MT (2002) Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Mol Phylogenet Evol 22:303–314

    Article  PubMed  CAS  Google Scholar 

  • Baumel A, Ainouche ML, Misset MT, Gourret JP, Bayer RJ (2003) Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in South-West France: Spartina × neyrautii re-examined. Plant Syst Evol 237:87–97

    Article  CAS  Google Scholar 

  • Belluco E, Camuffo M, Ferrari S, Modenese L, Silvestri S, Marani A, Marani M (2006) Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sens Environ 105:54–67

    Article  Google Scholar 

  • Bouma TJ, Ortells V, Ysebaert T (2009) Comparing biodiversity effects among ecosystem engineers of contrasting strength: macrofauna diversity in Zostera noltii and Spartina anglica vegetations. Helgol Mar Res 63:3–18

    Article  Google Scholar 

  • Bulleri F, Balata D, Bertocci I, Tamburello L, Benedetti-Cecchi L (2010) The seaweed Caulerpa racemosa on Mediterranean rocky reefs: from passenger to driver of ecological change. Ecology 91:2205–2212

    Article  PubMed  Google Scholar 

  • Casazza ML, Overton CT, Bui T-VD, Hull JM, Albertson JD, Bloom VK, Bobzien S, McBroom J, Latta M, Olofson P, Rohmer TM, Schwarzbach S, Strong DR, Grijalva E, Wood JK, Skalos SM, Takekawa J (2016) Endangered species management and ecosystem restoration: finding the common ground. Ecol Soc 21(1):19

    Article  Google Scholar 

  • Castillo JM, Fernandez-Baco L, Castellanos EM, Luque CJ, Figueroa ME, Davy AJ (2000) Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances. J Ecol 88:801–812

    Article  Google Scholar 

  • Castillo JM, Redondo S, Wharmby C, Figueroa ME, Luque T, Castellanos EM, Davy AJ (2005) Environmental determination of shoot height in populations of the cordgrass Spartina maritima. Estuaries 28:761–766

    Article  Google Scholar 

  • Cazzin M, Ghirelli L, Mion D, Scarton F (2009) Completamento della cartografia della vegetazione e degli habitat laguna di Venezia: Anni 2005-2007. Lavori Societa Veneziana di Scienze Naturali 34:81–89

    Google Scholar 

  • Chung C (1983) Geographical distribution of Spartina anglica C.E. Hubbard in China. Bull Mar Sci 33:753–758

    Google Scholar 

  • Cope T, Gray A (2009) Grasses of the British Isles. BSBI Handbook 13. Botanical Society of the British Isles with Royal Botanic Gardens, Devon

  • Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14:405–410

    Article  PubMed  CAS  Google Scholar 

  • Curado G, Figueroa E, Castillo JM (2012) Vertical sediment dynamics in Spartina maritima restored, non-restored and preserved marshes. Ecol Eng 47:30–35

    Article  Google Scholar 

  • Davis HG, Taylor CM, Civille JC, Strong DR (2004a) An Allee effect at the front of a plant invasion: Spartina in a Pacific estuary. J Ecol 92:321–327

    Article  Google Scholar 

  • Davis HG, Taylor CM, Lambrinos JG, Strong DR (2004b) Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proc Natl Acad Sci USA 101:13804–13807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Storme N, Zamariola L, Mau M, Sharbel TF, Geelen D (2013) Volume-based pollen size analysis: an advanced method to assess somatic and gametophytic ploidy in flowering plants. Plant Reprod 26:65–81

    Article  PubMed  CAS  Google Scholar 

  • Dethier MNM, Hacker SS (2004) Improving management practices for invasive cordgrass in the Pacific Northwest: a case study of Spartina anglica. Washington Sea Grant Publication, Seattle, p 24

    Google Scholar 

  • Doody JP (1990) Spartina—friend or foe? a conservation viewpoint. In: Gray A, Benham P (eds) Spartina anglica—a research review. Institut of Terrestrial Ecology, Natural Environment Research Council, pp 77–79

    Google Scholar 

  • Ferris C, King R, Gray A (1997) Molecular evidence for the maternal parentage in the hybrid origin of Spartina anglica CE Hubbard. Mol Ecol 6:185–187

    Article  CAS  Google Scholar 

  • Goodman PJ, Braybrooks EM, Marchant CJ, Lambert JM (1969) Spartina × townsendii H. & J. Groves sensu lato. J Ecol 57:298–313

    Article  Google Scholar 

  • Goss-Custard JD, Moser ME (1988) Rates of change in the numbers of Dunlin, Calidris alpina, wintering in British estuaries in relation to the spread of Spartina anglica. J Appl Ecol 25:95–109

    Article  Google Scholar 

  • Gray AJ, Marshall DF, Raybould AF (1991) A century of evolution in Spartina anglica. Adv Ecol Res 21:1–62

    Article  Google Scholar 

  • Gribsholt B, Kristensen E (2002) Effects of bioturbation and plant roots on salt marsh biogeochemistry: a mesocosm study. Mar Ecol Prog Ser 241:71–87

    Article  Google Scholar 

  • Grosholz ED, Levin LA, Tyler AC, Neira C (2009) Changes in community structure and ecosystem function following Spartina alterniflora invasion of Pacific Estuaries. In: Silliman BR, Grosholz E, Bertness MD (eds) Human impacts on salt marshes: a global perspective. University of California Press, Berkeley, pp 23–40

    Google Scholar 

  • Guo W, Huang Y, He Z, Yan Y, Zhou R, Shi S (2013) Development and characterization of microsatellite loci for smooth cordgrass, Spartina alterniflora (Poaceae). Appl Plant Sci 1:1200211

    Article  Google Scholar 

  • Hacker SD, Heimer D, Hellquist CE, Reeder TG, Reeves B, Riordan TJ, Dethier MN (2001) A marine plant (Spartina anglica) invades widely varying habitats: potential mechanisms of invasion and control. Biol Invasions 3:211–217

    Article  Google Scholar 

  • Hedge P, Kriwoken LK (2000) Evidence for effects of Spartina anglica invasion on benthic macrofauna in Little Swanport estuary, Tasmania. Austral Ecol 25:150–159

    Article  Google Scholar 

  • Hobday AJ, Burrows M, Holbrook NJ (2016) A hierarchical approach to defining marine heatwaves. Prog Oceanogr 141:227–238

    Article  Google Scholar 

  • Hubbard CE (1991) Population variation in Spartina anglica C. E. Hubbard. III. Response to substrate variation in a glasshouse experiment. New Phytol 117:141–152

    Article  Google Scholar 

  • Huckle JM, Marrs RH, Potter JA (2002) Interspecific and intraspecific interactions between salt marsh plants: integrating the effects of environmental factors and density on plant performance. Oikos 96:307–319

    Article  Google Scholar 

  • Ibáñez C, Curcó A, Day JW, Prat N (2000) Structure and productivity of microtidal Mediterranean coastal marshes. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, London, pp 107–137

    Google Scholar 

  • Inglis G, Hurren H, Oldman J, Haskew R (2006) Using habitat suitability index and particle dispersion models for early detection of marine invaders. Ecol Appl 16:1377–1390

    Article  PubMed  Google Scholar 

  • Katsanevakis S, Wallentinus I, Zenetos A, Leppäkoski E, Çinar ME, Oztürk B, Grabowski M, Golani D, Cardoso AC (2014) Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat Invasions 9:391–423

    Article  Google Scholar 

  • Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Plant invasions: general aspects and special problems. pp 15–38

  • Kriwoken LK, Hedge P (2000) Exotic species and estuaries: managing Spartina anglica in Tasmania, Australia. Ocean Coast Manag 43:573–584

    Article  Google Scholar 

  • Lampert A, Hastings A, Grosholz ED, Jardine SL, Sanchirico JN (2014) Optimal approaches for balancing invasive species eradication and endangered species management. Science 344:1028–1031

    Article  PubMed  CAS  Google Scholar 

  • Lee WG, Partridge TR (1983) Rates of spread of Spartina anglica and sediment accretion in the New River Estuary, Invercargill, New Zealand. NZ J Bot 21:231–236

    Article  Google Scholar 

  • Li HL, Lei GC, Zhi YB, An SQ, Huang HP, Ouyang Y, Zhao L, Deng ZF, Liu YH (2011) Nitrogen level changes the interactions between a native (Scirpus triqueter) and an exotic species (Spartina anglica) in coastal China. PLoS ONE 6:e25629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lo VB, Bouma TJ, van Belzen J, Van Colen C, Airoldi L (2017) Interactive effects of vegetation and sediment properties on erosion of salt marshes in the Northern Adriatic Sea. Mar Environ Res 131:32-42

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1504

    Article  PubMed  CAS  Google Scholar 

  • MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86:42–55

    Article  Google Scholar 

  • Marchant C, Goodman P (1969) Spartina maritima (Curtis) Fernald. J Ecol 57:287–291

    Article  Google Scholar 

  • Merloni N (2007) Gli habitat di interesse comunitario (Direttiva 92/43/CEE) nella Riserva Naturale Sacca di Bellocchio (province di Ravenna e Ferrara). Fitosociologia 44:83–88

    Google Scholar 

  • Merloni N, Piccoli F (2007) Comunità vegetali rare e minacciate nelle stazioni ravennati del Parco del Delta del Po (Regione Emilia-Romagna). Fitosociologia 44:67–76

    Google Scholar 

  • Mion D, Ghirelli L, Cazzin M, Cavalli I, Scarton F (2010) Vegetazione alofila in laguna di Venezia: dinamiche a breve e medio termine. Lavori Societa Veneziana di Scienze Naturali 35:57–70

    Google Scholar 

  • Navarra A, Tubiana L (2013) Regional assessment of climate change in the Mediterranean: Volume 2: Agriculture, forests and ecosystem services and people. Advances in global change research. Springer, Dordrecht

    Google Scholar 

  • Nehring S, Adsersen H (2006) NOBANIS—invasive alien species fact sheet Spartina anglica. From: Online database of the European Network on invasive alien species—NOBANIS www.nobanis.org. Accessed 25 Feb 2016

  • Neumeier U, Ciavola P (2004) Flow resistance and associated sedimentary processes in a Spartina maritima salt-marsh. J Coast Res 20:435–447

    Article  Google Scholar 

  • Oliver FW (1925) Spartina townsendii: its mode of establishment, economic uses and taxonomic status. J Ecol 13:74–91

    Article  Google Scholar 

  • Pennings SC, Bertness MD (2001) Salt marsh communities. In: Marine community ecology. pp 289–316

  • Piccoli F, Pellizzari M, Dell’Aquila L, Corticelli S (1999) Carta della vegetazione del Parco Regionale del Delta del Po. Stazioni Centro Storico e Valli di Comacchio. Scala 1:35.000. Regione Emilia-Romagna, Servizio Cartografico e Geologico

  • Pickart A (2012) Spartina densiflora invasion ecology and the restoration of native salt marshes, Huumboldt Bay, California. Unpublished report, U.S. Fish & Wildlife Service, Arcata, California

  • Pignatti S (1982) Flora d’Italia. Bologna, vol 1. Edagricole, Bologna, 790 pp

  • Pyšek P (2003) How reliable are data on alien species in Flora Europaea? Flora 198:499–507

    Article  Google Scholar 

  • Pyšek P, Hulme PE, Meyerson LA, Smith GF, Boatwright JS, Crouch NR, Figueiredo E, Foxcroft LC, Jarošík V, Richardson DM, Suda J, Wilson JRU (2013) Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB Plants 5:1–25

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Ranwell DS (1967) World resources of Spartina townsendii (sensu lato) and economic use of Spartina marshland. J Appl Ecol 4:239–256

    Article  Google Scholar 

  • Reeder TG, Hacker SD (2004) Factors contributing to the removal of a marine grass invader (Spartina anglica) and subsequent potential for habitat restoration. Estuaries 27:244–252

    Article  Google Scholar 

  • Roberts P, Pullin AS (2008) The effectiveness of management interventions for the control of Spartina species: a systematic review and meta-analysis. Aquat Conserv Mar Freshw Ecosyst 18:592–618

    Article  Google Scholar 

  • Saarela JM (2012) Taxonomic synopsis of invasive and native Spartina (Poaceae, Chloridoideae) in the Pacific Northwest (British Columbia, Washington and Oregon), including the first report of Spartina × townsendii for British Columbia, Canada. PhytoKeys 82:25–82

    Article  Google Scholar 

  • Scarton F, Ghirelli L, Curiel D, Rismondo A (2003) First data on Spartina × townsendii in the Lagoon of Venice (Italy). In: Proceedings of the sixth international conference on the Mediterranean coastal environment, MEDCOAST 03, pp 787–792

  • Scarton F, Ghirelli L, Cavalli I, Cazzin M, Scattolin M (2004) Spartina × townsendii H. and J. Groves, nuova alofita per la Laguna di Venezia: Distribuzione al 2003. Bollettino del Museo Civico di Storia Naturale di Venezia 55

  • Scholten M, Rozema J (1990) The competitive ability of Spartina anglica on Dutch salt marshes. In: Gray AJ, Benham PEM (eds) Spartina anglica—a research review. Institute of Terrestrial Ecology, London, 79 pp

  • Sell P, Murrell G (1996) Flora of Great Britain and Ireland: Volume 5, Butomaceae - Orchidaceae, vol 5. Cambridge University Press, Cambridge

    Google Scholar 

  • Silvestri S, Defina A, Marani M (2005) Tidal regime, salinity and salt marsh plant zonation. Estuar Coast Shelf Sci 62:119–130

    Article  CAS  Google Scholar 

  • Stace C (2010) New Flora of the British Isles, 3rd edn. Cambridge University Press, Cambridge, p 1266

    Google Scholar 

  • Strain EM, van Belzen J, Comandini P, Bouma TJ, Wong J, Airoldi L (2017) The role of changing climate in driving the shift from perennial grasses to annual succulents in a Mediterranean salt marsh. J Ecol. https://doi.org/10.1111/1365-2745.12799

    Article  Google Scholar 

  • Strong DR, Ayres DA (2009) Spartina introductions and consequences in salt marshes. In: Human impacts on salt marshes: a global perspective. University of California Press, Berkeley, pp 3–22

  • Strong DR, Ayres DR (2013) Ecological and evolutionary misadventures of Spartina. Annu Rev Ecol Evol Syst 44:389–410

    Article  Google Scholar 

  • Taylor CM, Davis HG, Civille JC, Grevstad FS, Hastings A (2004) Consequences of an Allee effect in the invasion of a Pacific estuary by Spartina alterniflora. Ecology 85:3254–3266

    Article  Google Scholar 

  • Thompson JD (1991) The biology of an invasive plant—What makes Spartina anglica so successful? Bioscience 41:393–401

    Article  Google Scholar 

  • Thompson JD, Mcneilly T, Gray AJ (1991a) Population variation in Spartina anglica C. E. Hubbard II. Reciprocal transplants among three successional populations. New Phytol 117:129–139

    Article  Google Scholar 

  • Thompson JD, Mcneilly T, Gray AJ (1991b) Population variation in Spartina anglica C. E. Hubbard III. Response to substrate variation in a glasshouse experiment. New Phytol 117:141–152

    Article  Google Scholar 

  • Umgiesser G, Ferrarin C, Cucco A, Pascalis F, De Bellafiore D, Ghezzo M, Bajo M (2014) Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modelling. J Geophys Res Oceans 119(4):2212–2226

    Article  Google Scholar 

  • van Hulzen JB, van Soelen J, Herman PMJ, Bouma TJ (2006) The significance of spatial and temporal patterns of algal mat deposition in structuring salt marsh vegetation. J Veg Sci 17:291–298

    Article  Google Scholar 

  • van Hulzen J, van Soelen J, Bouma T (2007) Morphological variation and habitat modification are strongly correlated for the autogenic ecosystem engineer Spartina anglica (common cordgrass). Estuaries Coasts 30:3–11

    Article  Google Scholar 

  • Verloove F (2010) Invaders in disguise. Conservation risks derived from misidentifications of invasive plants. Manag Biol Invasions 1:1–5

    Article  Google Scholar 

  • Washington State Department of Agriculture (2015) Spartina Eradication Program 2014 Progress Report, p, 33

  • Williams NSG, Hahs AK, Morgan JW (2011) A dispersal-constrained habitat suitability model for predicting invasion of alpine vegetation. Ecol Appl 18:347–359

    Article  Google Scholar 

  • Wong JXW, Van Colen C, Airoldi L (2015) Nutrient levels modify saltmarsh responses to increased inundation in different soil types. Mar Environ Res 104:37–46

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Filippo Piccoli, the Orto Botanico ed Erbario di Ferrara and the Orto Botanico di Padova for their kind assistance and providing access to historical herbarium samples. For their help in the field and laboratory work, we are very thankful to Elena Piccioni, Giovanni Nobili and the Corpo Forestale dello Stato Emilia Romagna. Thanks also goes to Veronica Lo for access to photographs, to Nico De Storme for help in lab analyses and to Malika Ainouche for general advice and guidance. This research was funded by the Erasmus Mundus MARES Ph.D. Programme (FPA 2011-0016), and by project TETRIS—Observing, modelling and Testing synergies and TRade-offs for the adaptive management of multiple Impacts in coastal Systems (PRIN 2010–2011 grant 2010PBMAXP_003, Italian Ministry of Education, University and Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Airoldi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, J.X.W., Costantini, F., Merloni, N. et al. The widespread and overlooked replacement of Spartina maritima by non-indigenous S. anglica and S. townsendii in north-western Adriatic saltmarshes. Biol Invasions 20, 1687–1702 (2018). https://doi.org/10.1007/s10530-017-1654-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1654-3

Keywords

Navigation