Advertisement

Biological Invasions

, Volume 20, Issue 7, pp 1657–1669 | Cite as

Establishment patterns of non-native insects in New Zealand

  • Emma Edney-Browne
  • Eckehard G. Brockerhoff
  • Darren Ward
Original Paper

Abstract

Insects comprise the majority of non-native animal species established around the world. However, geographic biases in knowledge hamper an overall understanding of biological invasions globally. A dataset of accidentally introduced non-native insect species established in New Zealand was compiled from databases, entomological literature, and examination of specimens in the New Zealand Arthropod Collection. For each non-native species, the first recorded location and first recorded date of detection was obtained. Excluding intentionally introduced species, there are 1477 non-native insect species successfully established in New Zealand across 16 orders, 234 families and 1017 genera. Four orders (Coleoptera, Hemiptera, Hymenoptera and Diptera) contributed 77.5% of all established insect species. Herbivores represented the largest feeding guild (47.7%), comprised of polyphagous (48.3%) or oligophagous (39.7%) species. The majority of these species originated in the Australasian (36.7%) and Palearctic regions (24.8%). Regression trees, using a binary recursive partitioning approach, found the number of international tourist arrivals, exotic vegetation cover, and regional gross domestic product were the main factors explaining spatial patterns of recently established species. Gross domestic product best explained temporal patterns of establishment over the last century. Our findings demonstrate that broad-scale analyses of non-native species have important applications for border biosecurity by providing insight into the extent of invasions. In New Zealand, the current trajectory indicates fewer non-native species are establishing annually, suggesting biosecurity efforts are being effective at reducing rates of establishment.

Keywords

Biological invasions Biosecurity Disturbance Globalisation Invasive species Spatial Temporal 

Notes

Acknowledgements

Thanks to Robert Hoare, Marie Claude Larivière, Richard Leschen, and Stephen Thorpe, for answering queries of species names, and to Martin Bader for advice on statistical analysis. We acknowledge the support from MBIE core backbone funding to Landcare Research within the ‘Characterising New Zealand’s Land Biota’ Portfolio, MBIE core funding (CO4X1104) to Scion, and the ‘Better Border Biosecurity’ collaboration (www.b3nz.org).

Data accessibility

The list of species and associated data is publically available ( https://doi.org/10.7931/J20K26HK) Edney-Browne E, Brockerhoff EG, Ward DF. First records of the establishment of exotic insects in New Zealand  https://doi.org/10.7931/j20k26hk.

Supplementary material

10530_2017_1652_MOESM1_ESM.docx (84 kb)
Supplementary material 1 (DOCX 83 kb)

References

  1. Barlow ND, Goldson SL, Pimentel D (2002) Alien invertebrates in New Zealand. In: Pimentel D (ed) Biological invasions economic and environmental costs of alien plant, animal, and microbe species. CRC Press, Boca Raton, pp 195–216CrossRefGoogle Scholar
  2. Berk RA (2008) Classification and regression trees (CART). Statistical learning from a regression perspective, Springer series in statistics. Springer, New YorkGoogle Scholar
  3. Brockerhoff EG, Bain J, Kimberley M, Knížek M (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J For Res 36(2):289–298CrossRefGoogle Scholar
  4. Brockerhoff EG, Barratt BI, Beggs JR, Fagan LL, Malcolm K, Phillips CB, Vink CJ (2010) Impacts of exotic invertebrates on New Zealand’s indigenous species and ecosystems. N Z J Ecol 34(1):158–174Google Scholar
  5. Charles JG (1993) A survey of mealybugs and their natural enemies in horticultural crops in North Island, New Zealand, with implications for biological control. Biocontrol Sci Technol 3(4):405–418CrossRefGoogle Scholar
  6. Cook A, Weinstein P, Woodward A (2002) The impact of exotic insects in New Zealand. CRC Press, Boca RatonCrossRefGoogle Scholar
  7. Costello CJ, Solow AR (2003) On the pattern of discovery of introduced species. Proc Natl Acad Sci USA 100(6):3321–3323CrossRefPubMedPubMedCentralGoogle Scholar
  8. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12(3):316–329CrossRefGoogle Scholar
  9. Dalmazzone S, Giaccaria S (2014) Economic drivers of biological invasions: a worldwide, bio-geographic analysis. Ecol Econ 105:154–165CrossRefGoogle Scholar
  10. Dawson W, Moser D, van Kleunen M, Kreft H, Pergl J, Pyšek P, Weigelt P, Winter M, Lenzner B, Blackburn TM, Dyer EE, Cassey P, Scrivens SL, Economo EP, Guénard B, Capinha C, Seebens H, García-Díaz P, Nentwig W, García-Berthou E, Casal C, Mandrak NE, Fuller P, Carsten M, Essl F (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nat Ecol Evol 1:0186.  https://doi.org/10.1038/s41559-017-0186 CrossRefGoogle Scholar
  11. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11):3178–3192CrossRefGoogle Scholar
  12. Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarošík V, Kleinbauer I, Krausmann F, Kuhn I, Nentwig W, Vila M, Genovesi P, Gherardi F, Desprez-Loustau M-L, Roques A, Pysek P (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci USA 108(1):203–207CrossRefPubMedGoogle Scholar
  13. Goldson SL (2011) Biosecurity, risk and policy: a New Zealand perspective. Journal Für Verbraucherschutz Und Lebensmittelsicherheit 6(1):41–47CrossRefGoogle Scholar
  14. Gordon DP (2010) New Zealand inventory of biodiversity, vol 2. Canterbury University Press, ChristchurchGoogle Scholar
  15. Haack RA (2006) Exotic bark-and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can J For Res 36(2):269–288CrossRefGoogle Scholar
  16. Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a sonditional inference framework. J Comput Graph Stat 15(3):651–674CrossRefGoogle Scholar
  17. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46(1):10–18CrossRefGoogle Scholar
  18. Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pysek P, Roques A, Sol D, Solarz D, Vilà M (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45(2):403–414CrossRefGoogle Scholar
  19. Jay M, Morad M, Bell A (2003) Biosecurity, a policy dilemma for New Zealand. Land Use Policy 20(2):121–129CrossRefGoogle Scholar
  20. Kenis M, Rabitsch W, Auger-Rozenberg M-A, Roques A (2007) How can alien species inventories and interception data help us prevent insect invasions? Bull Entomol Res 97(05):489–502CrossRefPubMedGoogle Scholar
  21. Kenis M, Auger-Rozenberg M-A, Roques A, Timms L, Péré C, Cock MJ, Settele J, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. In: Langor D, Sweeney J (eds) Ecological impacts of non-native invertebrates and fungi on terrestrial ecosystems. Springer, Berlin, pp 21–45CrossRefGoogle Scholar
  22. Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ 10(3):135–143CrossRefGoogle Scholar
  23. Liebhold AM, McCullough DG, Blackburn LM, Frankel SJ, Von Holle B, Aukema JE (2013) A highly aggregated geographical distribution of forest pest invasions in the USA. Divers Distrib 19(9):1208–1216CrossRefGoogle Scholar
  24. Liebhold AM, Yamanaka T, Roques A, Augustin S, Chown SL, Brockerhoff EG, Pyšek P (2016) Global compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biol Invasions 18:893–905CrossRefGoogle Scholar
  25. Liebhold AM, Brockerhoff EG, Kimberley M (2017) Depletion of heterogeneous source species pools predicts future invasion rates. J Appl Ecol.  https://doi.org/10.1111/1365-2664.12895 CrossRefGoogle Scholar
  26. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20(5):223–228CrossRefPubMedGoogle Scholar
  27. Martin NA (2007) PlanytSynz™: an invertebrate herbivore biodiversity assessment tool. http://plant-synz.landcareresearch.co.nz. Accessed 6 Nov 2014
  28. Meyerson LA, Reaser JK (2002) Biosecurity: moving toward a comprehensive approach. Bioscience 52(7):593–600CrossRefGoogle Scholar
  29. Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23(5):237–244CrossRefPubMedGoogle Scholar
  30. Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Essl F, Bacher S, Chiron F, Didžiulis V, Essl F, Genovesi P, Gherardi F, Hejda M, Kark S, Lambdon PW, Desprez-Loustau M-L, Nentwig W, Jan Pergl J, Poboljša K, Rabitsch W, Roques A, Roy DB, Shirley S, Solarz W, Vilà M, Winter M (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107(27):12157–12162CrossRefPubMedPubMedCentralGoogle Scholar
  31. Roques A (2010) Taxonomy, time and geographic patterns. BioRisk 4(1):11–26CrossRefGoogle Scholar
  32. Roques A, Rabitsch W, Rasplus J-Y, Lopez-Vaamonde C, Nentwig W, Kenis M (2009) Alien terrestrial invertebrates of Europe. In: Hulme PE, Nentwig W, Pyšek P, Vilà M (eds) Handbook of alien species in Europe. Springer, Berlin, pp 63–79CrossRefGoogle Scholar
  33. Roques A, Auger-Rozenberg M-A, Blackburn TM, Garnas J, Pyšek P, Rabitsch W, Richardson DM, Wingfield MJ, Liebhold AM, Duncan RP (2016) Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol Invasions 18:907–920CrossRefGoogle Scholar
  34. Saccaggi DL, Karsten M, Robertson MP, Kumschick S, Somers MJ, Wilson JRU, Terblanche JS (2016) Methods and approaches for the management of arthropod border incursions. Biol Invasions 18:1057–1075CrossRefGoogle Scholar
  35. Sax DF, Gaines SD (2003) Species diversity: from global decreases to local increases. Trends Ecol Evol 18(11):561–566CrossRefGoogle Scholar
  36. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435.  https://doi.org/10.1038/ncomms14435 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Simberloff D, Parker IM, Windle PN (2005) Introduced species policy, management, and future research needs. Front Ecol Environ 3(1):12–20CrossRefGoogle Scholar
  38. Teulon DAJ, Stufkens MA (2002) Biosecurity and aphids in New Zealand. N Z Plant Prot 55:12–17Google Scholar
  39. Van Engelsdorp D, Speybroeck N, Evans JD, Nguyen BK, Mullin C, Frazier M, Frazier J, Cox-Foster D, Chen Y, Tarpy DR, Haubruge E, Pettis JS, Saegerman C (2010) Weighing risk factors associated with bee colony collapse disorder by classification and regression tree analysis. J Econ Entomol 103(5):1517–1523CrossRefGoogle Scholar
  40. Ward DF, Edney-Browne E (2015) Poles apart: comparing trends of Alien Hymenoptera in New Zealand with Europe (DAISIE). PLoS ONE 10(7):e0132264CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ward DF, Beggs JR, Clout MN, Harris RJ, O’Connor S (2006) The diversity and origin of exotic ants arriving in New Zealand via human-mediated dispersal. Divers Distrib 12(5):601–609CrossRefGoogle Scholar
  42. Withers TM (2001) Colonization of eucalypts in New Zealand by Australian insects. Austral Ecol 26(5):467–476CrossRefGoogle Scholar
  43. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, BurlingtonGoogle Scholar
  44. Yamanaka T, Morimoto N, Nishida GM, Kiritani K, Moriya S, Liebhold AM (2015) Comparison of insect invasions in North America, Japan and their islands. Biol Invasions 17(10):3049–3061CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Scion (New Zealand Forest Research Institute)Riccarton, ChristchurchNew Zealand
  3. 3.Landcare ResearchAucklandNew Zealand

Personalised recommendations