Skip to main content

Advertisement

Log in

Establishment patterns of non-native insects in New Zealand

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Insects comprise the majority of non-native animal species established around the world. However, geographic biases in knowledge hamper an overall understanding of biological invasions globally. A dataset of accidentally introduced non-native insect species established in New Zealand was compiled from databases, entomological literature, and examination of specimens in the New Zealand Arthropod Collection. For each non-native species, the first recorded location and first recorded date of detection was obtained. Excluding intentionally introduced species, there are 1477 non-native insect species successfully established in New Zealand across 16 orders, 234 families and 1017 genera. Four orders (Coleoptera, Hemiptera, Hymenoptera and Diptera) contributed 77.5% of all established insect species. Herbivores represented the largest feeding guild (47.7%), comprised of polyphagous (48.3%) or oligophagous (39.7%) species. The majority of these species originated in the Australasian (36.7%) and Palearctic regions (24.8%). Regression trees, using a binary recursive partitioning approach, found the number of international tourist arrivals, exotic vegetation cover, and regional gross domestic product were the main factors explaining spatial patterns of recently established species. Gross domestic product best explained temporal patterns of establishment over the last century. Our findings demonstrate that broad-scale analyses of non-native species have important applications for border biosecurity by providing insight into the extent of invasions. In New Zealand, the current trajectory indicates fewer non-native species are establishing annually, suggesting biosecurity efforts are being effective at reducing rates of establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barlow ND, Goldson SL, Pimentel D (2002) Alien invertebrates in New Zealand. In: Pimentel D (ed) Biological invasions economic and environmental costs of alien plant, animal, and microbe species. CRC Press, Boca Raton, pp 195–216

    Chapter  Google Scholar 

  • Berk RA (2008) Classification and regression trees (CART). Statistical learning from a regression perspective, Springer series in statistics. Springer, New York

    Google Scholar 

  • Brockerhoff EG, Bain J, Kimberley M, Knížek M (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J For Res 36(2):289–298

    Article  Google Scholar 

  • Brockerhoff EG, Barratt BI, Beggs JR, Fagan LL, Malcolm K, Phillips CB, Vink CJ (2010) Impacts of exotic invertebrates on New Zealand’s indigenous species and ecosystems. N Z J Ecol 34(1):158–174

    Google Scholar 

  • Charles JG (1993) A survey of mealybugs and their natural enemies in horticultural crops in North Island, New Zealand, with implications for biological control. Biocontrol Sci Technol 3(4):405–418

    Article  Google Scholar 

  • Cook A, Weinstein P, Woodward A (2002) The impact of exotic insects in New Zealand. CRC Press, Boca Raton

    Book  Google Scholar 

  • Costello CJ, Solow AR (2003) On the pattern of discovery of introduced species. Proc Natl Acad Sci USA 100(6):3321–3323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12(3):316–329

    Article  Google Scholar 

  • Dalmazzone S, Giaccaria S (2014) Economic drivers of biological invasions: a worldwide, bio-geographic analysis. Ecol Econ 105:154–165

    Article  Google Scholar 

  • Dawson W, Moser D, van Kleunen M, Kreft H, Pergl J, Pyšek P, Weigelt P, Winter M, Lenzner B, Blackburn TM, Dyer EE, Cassey P, Scrivens SL, Economo EP, Guénard B, Capinha C, Seebens H, García-Díaz P, Nentwig W, García-Berthou E, Casal C, Mandrak NE, Fuller P, Carsten M, Essl F (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nat Ecol Evol 1:0186. https://doi.org/10.1038/s41559-017-0186

    Article  Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11):3178–3192

    Article  Google Scholar 

  • Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarošík V, Kleinbauer I, Krausmann F, Kuhn I, Nentwig W, Vila M, Genovesi P, Gherardi F, Desprez-Loustau M-L, Roques A, Pysek P (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci USA 108(1):203–207

    Article  PubMed  Google Scholar 

  • Goldson SL (2011) Biosecurity, risk and policy: a New Zealand perspective. Journal Für Verbraucherschutz Und Lebensmittelsicherheit 6(1):41–47

    Article  Google Scholar 

  • Gordon DP (2010) New Zealand inventory of biodiversity, vol 2. Canterbury University Press, Christchurch

    Google Scholar 

  • Haack RA (2006) Exotic bark-and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can J For Res 36(2):269–288

    Article  Google Scholar 

  • Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a sonditional inference framework. J Comput Graph Stat 15(3):651–674

    Article  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46(1):10–18

    Article  Google Scholar 

  • Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pysek P, Roques A, Sol D, Solarz D, Vilà M (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45(2):403–414

    Article  Google Scholar 

  • Jay M, Morad M, Bell A (2003) Biosecurity, a policy dilemma for New Zealand. Land Use Policy 20(2):121–129

    Article  Google Scholar 

  • Kenis M, Rabitsch W, Auger-Rozenberg M-A, Roques A (2007) How can alien species inventories and interception data help us prevent insect invasions? Bull Entomol Res 97(05):489–502

    Article  PubMed  CAS  Google Scholar 

  • Kenis M, Auger-Rozenberg M-A, Roques A, Timms L, Péré C, Cock MJ, Settele J, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. In: Langor D, Sweeney J (eds) Ecological impacts of non-native invertebrates and fungi on terrestrial ecosystems. Springer, Berlin, pp 21–45

    Chapter  Google Scholar 

  • Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ 10(3):135–143

    Article  Google Scholar 

  • Liebhold AM, McCullough DG, Blackburn LM, Frankel SJ, Von Holle B, Aukema JE (2013) A highly aggregated geographical distribution of forest pest invasions in the USA. Divers Distrib 19(9):1208–1216

    Article  Google Scholar 

  • Liebhold AM, Yamanaka T, Roques A, Augustin S, Chown SL, Brockerhoff EG, Pyšek P (2016) Global compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biol Invasions 18:893–905

    Article  Google Scholar 

  • Liebhold AM, Brockerhoff EG, Kimberley M (2017) Depletion of heterogeneous source species pools predicts future invasion rates. J Appl Ecol. https://doi.org/10.1111/1365-2664.12895

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20(5):223–228

    Article  PubMed  Google Scholar 

  • Martin NA (2007) PlanytSynz™: an invertebrate herbivore biodiversity assessment tool. http://plant-synz.landcareresearch.co.nz. Accessed 6 Nov 2014

  • Meyerson LA, Reaser JK (2002) Biosecurity: moving toward a comprehensive approach. Bioscience 52(7):593–600

    Article  Google Scholar 

  • Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23(5):237–244

    Article  PubMed  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Essl F, Bacher S, Chiron F, Didžiulis V, Essl F, Genovesi P, Gherardi F, Hejda M, Kark S, Lambdon PW, Desprez-Loustau M-L, Nentwig W, Jan Pergl J, Poboljša K, Rabitsch W, Roques A, Roy DB, Shirley S, Solarz W, Vilà M, Winter M (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107(27):12157–12162

    Article  PubMed  PubMed Central  Google Scholar 

  • Roques A (2010) Taxonomy, time and geographic patterns. BioRisk 4(1):11–26

    Article  Google Scholar 

  • Roques A, Rabitsch W, Rasplus J-Y, Lopez-Vaamonde C, Nentwig W, Kenis M (2009) Alien terrestrial invertebrates of Europe. In: Hulme PE, Nentwig W, Pyšek P, Vilà M (eds) Handbook of alien species in Europe. Springer, Berlin, pp 63–79

    Chapter  Google Scholar 

  • Roques A, Auger-Rozenberg M-A, Blackburn TM, Garnas J, Pyšek P, Rabitsch W, Richardson DM, Wingfield MJ, Liebhold AM, Duncan RP (2016) Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol Invasions 18:907–920

    Article  Google Scholar 

  • Saccaggi DL, Karsten M, Robertson MP, Kumschick S, Somers MJ, Wilson JRU, Terblanche JS (2016) Methods and approaches for the management of arthropod border incursions. Biol Invasions 18:1057–1075

    Article  Google Scholar 

  • Sax DF, Gaines SD (2003) Species diversity: from global decreases to local increases. Trends Ecol Evol 18(11):561–566

    Article  Google Scholar 

  • Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435. https://doi.org/10.1038/ncomms14435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simberloff D, Parker IM, Windle PN (2005) Introduced species policy, management, and future research needs. Front Ecol Environ 3(1):12–20

    Article  Google Scholar 

  • Teulon DAJ, Stufkens MA (2002) Biosecurity and aphids in New Zealand. N Z Plant Prot 55:12–17

    Google Scholar 

  • Van Engelsdorp D, Speybroeck N, Evans JD, Nguyen BK, Mullin C, Frazier M, Frazier J, Cox-Foster D, Chen Y, Tarpy DR, Haubruge E, Pettis JS, Saegerman C (2010) Weighing risk factors associated with bee colony collapse disorder by classification and regression tree analysis. J Econ Entomol 103(5):1517–1523

    Article  Google Scholar 

  • Ward DF, Edney-Browne E (2015) Poles apart: comparing trends of Alien Hymenoptera in New Zealand with Europe (DAISIE). PLoS ONE 10(7):e0132264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ward DF, Beggs JR, Clout MN, Harris RJ, O’Connor S (2006) The diversity and origin of exotic ants arriving in New Zealand via human-mediated dispersal. Divers Distrib 12(5):601–609

    Article  Google Scholar 

  • Withers TM (2001) Colonization of eucalypts in New Zealand by Australian insects. Austral Ecol 26(5):467–476

    Article  Google Scholar 

  • Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, Burlington

    Google Scholar 

  • Yamanaka T, Morimoto N, Nishida GM, Kiritani K, Moriya S, Liebhold AM (2015) Comparison of insect invasions in North America, Japan and their islands. Biol Invasions 17(10):3049–3061

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Robert Hoare, Marie Claude Larivière, Richard Leschen, and Stephen Thorpe, for answering queries of species names, and to Martin Bader for advice on statistical analysis. We acknowledge the support from MBIE core backbone funding to Landcare Research within the ‘Characterising New Zealand’s Land Biota’ Portfolio, MBIE core funding (CO4X1104) to Scion, and the ‘Better Border Biosecurity’ collaboration (www.b3nz.org).

Data accessibility

The list of species and associated data is publically available (https://doi.org/10.7931/J20K26HK) Edney-Browne E, Brockerhoff EG, Ward DF. First records of the establishment of exotic insects in New Zealand https://doi.org/10.7931/j20k26hk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren Ward.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edney-Browne, E., Brockerhoff, E.G. & Ward, D. Establishment patterns of non-native insects in New Zealand. Biol Invasions 20, 1657–1669 (2018). https://doi.org/10.1007/s10530-017-1652-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1652-5

Keywords

Navigation