Biological Invasions

, Volume 19, Issue 12, pp 3659–3674 | Cite as

Does restricted access limit management of invasive urban frogs?

  • Giovanni VimercatiEmail author
  • Sarah J. Davies
  • Cang Hui
  • John Measey


Management recommendations that target urban invaders should consider environmental and socio-economic aspects peculiar to the urban landscape. Urbanization often leads to the fragmentation of the invaded landscape into subunits inaccessible to managers (restricted access) or for which detailed information is lacking. Using models to explore impact of these limitations on management success provides a useful approach to propose effective countermeasures. Here we deploy a spatially explicit age-structured model applied to a pond network to investigate how restricted access and lack of detailed information may affect management of three invasive anuran species across a peri-urban landscape. The target species, the guttural toad Sclerophrys gutturalis, the African clawed frog Xenopus laevis and the painted reed frog Hyperolius marmoratus, belong to different ecotypes (terrestrial, aquatic and arboreal, respectively) and have different life history traits. We show that restricted property access significantly constrains management success in two of the three species (the guttural toad and the painted reed frog), while lack of detailed information around the invaded landscape impedes successful management in only one species (the guttural toad). The species-dependent response we detected is due to contrasting demographic and spatial invasion dynamics linked to the different anuran ecotypes. Our work highlights the necessity to adopt a context-dependent approach when proposing management recommendations in urban environment.


Age-structured model Amphibian ecotypes Context-dependent approach Information incompleteness Landscape fragmentation Social dimension 



Funding was provided by the DST-NRF Centre of Excellence for Invasion Biology.

Supplementary material

10530_2017_1599_MOESM1_ESM.xlsx (464 kb)
Supplementary material 1 (XLSX 464 kb)


  1. Baker C, Bode M (2016) Placing invasive species management in a spatiotemporal context. Ecol Appl 26:712–725.
  2. Beard KH, Price EA, Pitt W (2009) Biology and Impacts of Pacific Island Invasive Species. 5. Eleutherodactylus coqui, the Coqui Frog (Anura: Leptodactylidae) 1. Pac Sci 63:297–316CrossRefGoogle Scholar
  3. Beaty LE, Salice CJ (2013) Size matters: insights from an allometric approach to evaluate control methods for invasive Australian Rhinella marina. Ecol Appl 23:1544–1553. doi: 10.1890/12-1298.1 CrossRefPubMedGoogle Scholar
  4. Biek R, Funk WC, Maxell BA, Mills LS (2002) What is missing in amphibian decline research: insights from ecological sensitivity analysis. Conserv Biol 16:728–734CrossRefGoogle Scholar
  5. Bishop PJ (2004) Hyperolius marmoratus Rapp, 1842. In: Minter LR, Burger M, Harrison JA, Braack HH, Bishop PJ, Kloepfer D (eds) Atlas and red data book of the frogs of South Africa, Lesotho and Swaziland. Smithsonian Institution, Washington, D.C., pp 141–143Google Scholar
  6. Blaustein AR, Hoffman PD, Hokit DG, Kiesecker JM, Walls SC, Hays JB (1994) UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Proc Natl Acad Sci 91:1791–1795CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blossey B (1999) Before, during and after: the need for long-term monitoring in invasive plant species management. Biol Invasions 1:301–311. doi: 10.1023/A:1010084724526 CrossRefGoogle Scholar
  8. Bogich TL, Liebhold AM, Shea K (2008) To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. J Appl Ecol 45:1134–1142. doi: 10.1111/j.1365-2664.2008.01494.x CrossRefGoogle Scholar
  9. Botham MS, Rothery P, Hulme PE, Hill MO, Preston CD, Roy DB (2009) Do urban areas act as foci for the spread of alien plant species? An assessment of temporal trends in the UK. Divers Distrib 15:338–345. doi: 10.1111/j.1472-4642.2008.00539.x CrossRefGoogle Scholar
  10. Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem management: a review. Ecol modell 176:313–332. doi: 10.1016/j.ecolmodel.2004.01.011 CrossRefGoogle Scholar
  11. Caplat P, Coutts S, Buckley YM (2012) Modeling population dynamics, landscape structure, and management decisions for controlling the spread of invasive plants. Ann NY Acad Sci 1249:72–83. doi: 10.1111/j.1749-6632.2011.06313.x CrossRefPubMedGoogle Scholar
  12. Carrasco LR, Cook D, Baker R, MacLeod A, Knight JD, Mumford JD (2012) Towards the integration of spread and economic impacts of biological invasions in a landscape of learning and imitating agents. Ecol Econ 76:95–103. doi: 10.1016/j.ecolecon.2012.02.009 CrossRefGoogle Scholar
  13. Chadès I, Martin TG, Nicol S, Burgman M, Possingham HP, Buckley YM (2011) General rules for managing and surveying networks of pests, diseases, and endangered species. Proc Natl Acad Sci 108:8323–8328. doi: 10.1073/pnas.1016846108 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coutts SR, van Klinken RD, Yokomizo H, Buckley YM (2011) What are the key drivers of spread in invasive plants: dispersal, demography or landscape: and how can we use this knowledge to aid management? Biol Invasions 13:1649–1661. doi: 10.1007/s10530-010-9922-5 CrossRefGoogle Scholar
  15. Cuddington K, Fortin MJ, Gerber LR, Hastings A, Liebhold A, O’Connor M, Ray C (2013) Process-based models are required to manage ecological systems in a changing world. Ecosphere 4:1–12. doi: 10.1890/ES12-00178.1 CrossRefGoogle Scholar
  16. Davies SJ, Clusella-Trullas S, Hui C, McGeoch MA (2013) Farm dams facilitate amphibian invasion: extra-limital range expansion of the painted reed frog in South Africa. Austral Ecol 38:851–863CrossRefGoogle Scholar
  17. Davies SJ, Measey GJ, Du Plessis D, Richardson DM (2016) Science and education at the Centre for Invasion Biology. In: Castro P, Azeiteiro UM, Bacelar-Nicolau P, Leal Filho W, Azul AM (eds) Biodiversity and education for sustainable development, World Sustainability Series. Springer, Cham, pp 93–105Google Scholar
  18. De Villiers A (2006) Amphibia: anura: Bufonidae Bufo gutturalis Power, 1927 guttural toad introduced population. Afr Herp News 40:28–30Google Scholar
  19. De Villiers FA (2016) The dispersal ability, performance and population dynamics of Cape Xenopus frogs. MSc thesis, Stellenbosch UniversityGoogle Scholar
  20. Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007) A century of the ornamental plant trade and its impact on invasion success. Divers Distrib 13:527–534. doi: 10.1111/j.1472-4642.2007.00359.x CrossRefGoogle Scholar
  21. Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172CrossRefGoogle Scholar
  22. Epanchin-Niell RS, Liebhold AM (2015) Benefits of invasion prevention: effect of time lags, spread rates, and damage persistence. Ecol Econ 116:146–153. doi: 10.1016/j.ecolecon.2015.04.014 CrossRefGoogle Scholar
  23. Epanchin-Niell RS, Haight RG, Berec L, Kean JM, Liebhold AM (2012) Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol Lett 15:803–812. doi: 10.1111/j.1461-0248.2012.01800.x CrossRefPubMedGoogle Scholar
  24. Epanchin-Niell RS, Brockerhoff EG, Kean JM, Turner JA (2014) Designing cost-efficient surveillance for early detection and control of multiple biological invaders. Ecol Appl 24:1258–1274. doi: 10.1890/13-1331.1 CrossRefGoogle Scholar
  25. Facon B, David P (2006) Metapopulation dynamics and biological invasions: a spatially explicit model applied to a freshwater snail. Am Nat 168:769–783. doi: 10.1086/508669 CrossRefPubMedGoogle Scholar
  26. Feng YJ, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC, Zhang P (2017) Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. Proc Natl Acad Sci 114:5864–5870. doi: 10.1073/pnas.1704632114 CrossRefGoogle Scholar
  27. Finnoff D, Shogren JF, Leung B, Lodge D (2005) The importance of bioeconomic feedback in invasive species management. Ecol Econ 52:367–381. doi: 10.1016/j.ecolecon.2004.06.020 CrossRefGoogle Scholar
  28. Florance D, Webb JK, Dempster T, Kearney MR, Worthing A, Letnic M (2011) Excluding access to invasion hubs can contain the spread of an invasive vertebrate. Proc R Soc Lond Ser B 278:2900–2908. doi: 10.1098/rspb.2011.0032 CrossRefGoogle Scholar
  29. Foster J, Sandberg LA (2004) Friends or foe? Invasive species and public green space in Toronto. Geogr Rev 94:178–198. doi: 10.1111/j.1931-0846.2004.tb00166.x CrossRefGoogle Scholar
  30. Fuller RA, Irvine KN, Devine-Wright P, Warren PH, Gaston KJ (2007) Psychological benefits of greenspace increase with biodiversity. Biol Lett 3:390–394. doi: 10.1098/rsbl.2007.0149 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Furman BL, Bewick AJ, Harrison TL, Greenbaum E, Gvoždík V, Kusamba C, Evans BJ (2015) Pan-African phylogeography of a model organism, the African clawed frog ‘Xenopus laevis’. Mol Ecol 24:909–925CrossRefPubMedGoogle Scholar
  32. Gaertner M, Larson BMH, Irlich UM, Holmes PM, Stafford L, van Wilgen BW, Richardson DM (2016) Managing invasive species in cities: a framework from Cape Town, South Africa? Landsc Urban Plann 151:1–9. doi: 10.1016/j.landurbplan.2016.03.010 CrossRefGoogle Scholar
  33. Harvey CT, Qureshi SA, MacIsaac HJ (2009) Detection of a colonizing, aquatic, non-indigenous species. Divers Distrib 15:429–437CrossRefGoogle Scholar
  34. Holden M, Nyrop J, Ellner S (2016) The economic benefit of time‐varying surveillance effort for invasive species management. J Appl Ecol 53:712–721.
  35. Hui C, Richardson DM (2017) Invasion dynamics. Oxford University Press, OxfordCrossRefGoogle Scholar
  36. Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847. doi: 10.1111/j.1365-2664.2006.01227.x CrossRefGoogle Scholar
  37. Hulme PE (2014) Invasive species challenge the global response to emerging diseases. Trends Parasitol 30:267–270. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  38. Januchowski-Hartley SR, Visconti P, Pressey RL (2011) A systematic approach for prioritizing multiple management actions for invasive species. Biol Invasions 13:1241–1253. doi: 10.1007/s10530-011-9960-7 CrossRefGoogle Scholar
  39. Joly P, Miaud C, Lehmann A, Grolet O (2001) Habitat matrix effects on pond occupancy in newts. Conserv Biol 15:239–248CrossRefGoogle Scholar
  40. Juliano SA, Lounibos LP (2005) Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol Lett 8:558–574. doi: 10.1111/j.1461-0248.2005.00755.x CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kettenring KM, Adams CR (2011) Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J Appl Ecol 48:970–979. doi: 10.1111/j.1365-2664.2011.01979.x CrossRefGoogle Scholar
  42. Kohli RK, Batish DR, Singh HP, Dogra KS (2006) Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India. Biol Invasions 8:1501–1510. doi: 10.1007/s10530-005-5842-1 CrossRefGoogle Scholar
  43. Lampo M, De Leo G (1998) The invasion ecology of the toad Bufo marinus: from South America to Australia. Ecol Appl 8:388–396Google Scholar
  44. Lever C (2001) The cane toad: the history and ecology of a successful colonist. Westbury Academic & Scientific Pub, OtleyGoogle Scholar
  45. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi: 10.1016/j.tree.2005.02.004 CrossRefPubMedGoogle Scholar
  46. Mackenzie BF, Larson BMH (2010) Participation under time constraints: landowner perceptions of rapid response to the emerald ash borer. Soc Nat Resour 23:1013–1022. doi: 10.1080/08941920903339707 CrossRefGoogle Scholar
  47. Marchante E, Marchante H, Morais M, Freitas H (2010) Combining methodologies to increase public awareness about invasive alien plants in Portugal. In: 2nd International workshop on invasive plants in the mediterranean type regions of the world. European Environment Agency, Trabzon, pp 227–239Google Scholar
  48. Measey J (2016) Overland movement in African clawed frogs (Xenopus laevis): a systematic systematic review. PeerJ 4:e2474CrossRefPubMedPubMedCentralGoogle Scholar
  49. Measey GJ, Tinsley RC (1998) Feral Xenopus laevis in South Wales. Herpetol J 8:23–27Google Scholar
  50. Measey GJ, Rödder D, Green SL, Kobayashi R, Lillo F, Lobos G, Thirion JM (2012) Ongoing invasions of the African clawed frog, Xenopus laevis: a global review. Biol Invasions 14:2255–2270CrossRefGoogle Scholar
  51. Measey GJ, Vimercati G, Villiers FA, Mokhatla M, Davies SJ, Thorp CJ, Kumschick S (2016) A global assessment of alien amphibian impacts in a formal framework. Divers Distrib 22:970–981CrossRefGoogle Scholar
  52. Measey J, Davies S, Vimercati G, Rebelo A, Schmidt W, Turner AA (2017) Invasive amphibians in southern Africa: a review of invasion pathways. Bothalia Appl Biodivers Conserv 47:1–12. doi: 10.4102/abc.v47i2.2117 Google Scholar
  53. Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC (2007) Optimal detection and control strategies for invasive species management. Ecol Econ 61:237–245. doi: 10.1016/j.ecolecon.2006.10.024 CrossRefGoogle Scholar
  54. Moen DS, Irschick DJ, Wiens JJ (2013) Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proc R Soc B 280(1773):20132156CrossRefPubMedPubMedCentralGoogle Scholar
  55. Moore JL, Runge MC, Webber BL, Wilson JRU (2011) Contain or eradicate? Optimizing the management goal for Australian acacia invasions in the face of uncertainty. Divers Distrib 17:1047–1059. doi: 10.1111/j.1472-4642.2011.00809.x CrossRefGoogle Scholar
  56. Morris JA, Shertzer KW, Rice JA (2010) A stage-based matrix population model of invasive lionfish with implications for control. Biol Invasions 13:7–12. doi: 10.1007/s10530-010-9786-8 CrossRefGoogle Scholar
  57. Müllerová J, Pyšek P, Jarošík V, Pergl JAN (2005) Aerial photographs as a tool for assessing the regional dynamics of the invasive plant species Heracleum mantegazzianum. J Appl Ecol 42:1042–1053CrossRefGoogle Scholar
  58. Myers JH, Simberloff D, Kuris AM, Carey JR (2000) Eradication revisited: dealing with exotic species. Trends Ecol Evol 15:316–320. doi: 10.1016/S0169-5347(00)01914-5 CrossRefPubMedGoogle Scholar
  59. Novoa A, Dehnen-Schmutz K, Fried J, Vimercati G (2017) Does public awareness increase support for invasive species management? Promising evidence across taxa and landscape types. Biol Invasions. doi: 10.1007/s10530-017-1592-0 Google Scholar
  60. Olson LJ (2006) The economics of terrestrial invasive species: a review of the literature. Agric Resour Econ Rev 35:178–194.
  61. Olson LJ, Roy S (2005) On prevention and control of an uncertain biological invasion. Rev Agric Econ 27:491–497. doi: 10.1111/j.1467-9353.2005.00249.x CrossRefGoogle Scholar
  62. Panetta FD (2007) Evaluation of weed eradication programs: containment and extirpation. Divers Distrib 13:33–41. doi: 10.1111/j.1472-4642.2006.00294.x Google Scholar
  63. Panetta FD, Cacho OJ (2014) Designing weed containment strategies: an approach based on feasibilities of eradication and containment. Divers Distrib 20:555–566. doi: 10.1111/ddi.12170 CrossRefGoogle Scholar
  64. Pichancourt JB, Chadès I, Firn J, van Klinken RD, Martin TG (2012) Simple rules to contain an invasive species with a complex life-cycle and high dispersal capacity. J Appl Ecol 49:52–62. doi: 10.1111/j.1365-2664.2011.02093.x CrossRefGoogle Scholar
  65. Picker MD, de Villiers AL (1989) The distribution and conservation status of Xenopus gilli (Anura: Pipidae). Biol Conserv 49:169–183CrossRefGoogle Scholar
  66. Pluess T, Cannon R, Jarošík V, Pergl J, Pyšek P, Bacher S (2012) When are eradication campaigns successful? A test of common assumptions. Biol Invasions 14:1365–1378. doi: 10.1007/s10530-011-0160-2 CrossRefGoogle Scholar
  67. Pyšek P, Hulme PE (2005) Spatio-temporal dynamics of plant invasions: Linking pattern to process 1. Biol Invasions 12:302–315. doi: 10.2980/i1195-6860-12-3-302.1 Google Scholar
  68. Pyšek P, Richardson DM (2010) Invasive species, environmental change, and health. Annu Rev Environ Resour 35:25–55. doi: 10.1146/annurev-environ-033009-095548 CrossRefGoogle Scholar
  69. Ramula S, Knight TM, Burns JH, Buckley YM (2008) General guidelines for invasive plant management based on comparative demography of invasive and native plant populations. J Appl Ecol 45:1124–1133. doi: 10.1111/j.1365-2664.2008.01502.x CrossRefGoogle Scholar
  70. Reis CS, Marchante H, Freitas H, Marchante E (2013) Public perception of invasive plant species: assessing the impact of workshop activities to promote young students’ awareness. Int J Sci Educ 35:690–712CrossRefGoogle Scholar
  71. Rowe L, Ludwig D (1991) Size and timing of metamorphosis in complex life cycles: time constraints and variation. Ecology 72:413–427CrossRefGoogle Scholar
  72. Shea K, Sheppard A, Woodburn T (2006) Seasonal life-history models for the integrated management of the invasive weed nodding thistle Carduus nutans in Australia. J Appl Ecol 43:517–526. doi: 10.1111/j.1365-2664.2006.01160.x CrossRefGoogle Scholar
  73. Silvertown J, Harvey M, Greenwood R, Dodd M, Rosewell J, Rebelo T (2015) Crowdsourcing the identification of organisms: a case-study of iSpot. ZooKeys 480:125–146CrossRefGoogle Scholar
  74. Simberloff D (2003) Eradication—preventing invasions at the outset. Weed Sci 51:247–253. doi: 10.1614/0043-1745(2003)051[0247:EPIATO]2.0.CO;2 CrossRefGoogle Scholar
  75. Simberloff D, Gibbons L (2004) Now you see them, now you don’t!—Population crashes of established introduced species. Biol Invasions 6:161–172. doi: 10.1023/B:BINV.0000022133.49752.46 CrossRefGoogle Scholar
  76. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66. doi: 10.1016/j.tree.2012.07.013 CrossRefPubMedGoogle Scholar
  77. Smith MA, Green DM (2005) Dispersal and the metapopulation in amphibian and paradigm ecology are all amphibian conservation: populations metapopulations? Ecography 28:110–128. doi: 10.1111/j.0906-7590.2005.04042.x CrossRefGoogle Scholar
  78. Smith MA, Green DM (2006) Sex, isolation and fidelity: unbiased long-distance dispersal in a terrestrial amphibian. Ecography 29:649–658. doi: 10.1111/j.2006.0906-7590.04584.x CrossRefGoogle Scholar
  79. Steel J, Weiss J, Morfe T (2014) To weed or not to weed? The application of an agent-based model to determine the costs and benefits of different management strategies. Plant Prot Q 29:101–110Google Scholar
  80. Tingley R, Ward-Fear G, Schwarzkopf L, Greenlees MJ, Phillips BL, Brown G, Clulow S, Webb J, Capon R, Strive T (2017) New weapons in the toad toolkit: a review of methods to control and mitigate the biodiversity impacts of invasive cane toads (Rhinella Marina). Q Rev Biol 92:123–149. doi: 10.1086/692167 CrossRefGoogle Scholar
  81. Tittensor DP, Walpole M, Hill SLL, Boyce DG, Britten GL, Burgess ND, Ye Y (2014) A mid-term analysis of progress toward international biodiversity targets. Science 346(6206):241–244. doi: 10.1126/science.1257484 CrossRefPubMedGoogle Scholar
  82. Van Sittert L, Measey GJ (2016) Historical perspectives on global exports and research of African clawed frogs (Xenopus laevis). Trans R Soc S Afr 71:157–166CrossRefGoogle Scholar
  83. Van Wilgen BW, Scott DF (2001) Managing fires on the Cape Peninsula, South Africa: dealing with the inevitable. J Mediterr Ecol 2:197–208Google Scholar
  84. Van Wilgen BW, Davies SJ, Richardson DM (2014) Invasion science for society: a decade of contributions from the centre for invasion biology. S Afr J Sci 110:1–12. doi: 10.1590/sajs.2014/a0074 Google Scholar
  85. Verbrugge LNH, Van Den Born RJG, Lenders HJR (2013) Exploring public perception of non-native species from a visions of nature perspective. Environ Manag 52:1562–1573. doi: 10.1007/s00267-013-0170-1 CrossRefGoogle Scholar
  86. Vidal-García M, Keogh JS (2015) Convergent evolution across the Australian continent: ecotype diversification drives morphological convergence in two distantly related clades of Australian frogs. J Evol Biol 28:2136–2151. doi: 10.1111/jeb.12746 CrossRefPubMedGoogle Scholar
  87. Vilà M, Basnou C, Pyšek P, Josefsson M, Genovesi P, Gollash S et al (2009) How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8:135–144. doi: 10.1890/080083 CrossRefGoogle Scholar
  88. Vimercati G (2017) Exploring the invasion of the guttural toad Sclerophrys gutturalis in Cape Town through a multidisciplinary approach. Ph.D. Dissertation, Stellenbosch UniversityGoogle Scholar
  89. Vimercati G, Hui C, Davies SJ, Measey GJ (2017) Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran. Ecol Modell 356:104–116. doi: 10.1016/j.ecolmodel.2017.03.017 CrossRefGoogle Scholar
  90. Vonesh JR, De la Cruz O (2002) Complex life-cycles and density dependence: assessing the contribution of egg mortality to amphibian declines. Oecol 133:325–333. doi: 10.1007/s00442-002-1039-9 CrossRefGoogle Scholar
  91. Vos CC, ter Braak CJF, Nieuwenhuizen W (2000) Incidence function modelling and conservation of the tree frog Hyla arborea in the Netherlands. Ecol Bull 48:165–180Google Scholar
  92. Warren CR (2007) Perspectives on the `alien’ versus `native’ species debate: a critique of concepts, language and practice. Prog Hum Geogr 31:427–446. doi: 10.1177/0309132507079499 CrossRefGoogle Scholar
  93. Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425CrossRefGoogle Scholar
  94. With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24:803–815. doi: 10.1111/j.0272-4332.2004.00480.x CrossRefPubMedGoogle Scholar
  95. Withers P, Louw G, Nicolson S (1982) Water loss, oxygen consumption and colour change in ‘waterproof’ reed frogs (Hyperolius). S Afr J Sci 78:30–32Google Scholar
  96. Wood KA, Stillman RA, Goss-Custard JD (2015) Co-creation of individual-based models by practitioners and modellers to inform environmental decision-making. J Appl Ecol 52:810–815. doi: 10.1111/1365-2664.12419 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Invasion Biology, Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
  2. 2.Centre for Invasion Biology, Department of Mathematical SciencesStellenbosch UniversityMatielandSouth Africa
  3. 3.Mathematical and Physical BiosciencesAfrican Institute for Mathematical SciencesCape TownSouth Africa

Personalised recommendations