Is there an urban effect in alien plant invasions?

Abstract

Cities are known to be extraordinarily rich in alien plant species compared to rural environments. This is related to specific attributes of urban areas including the availability of natural resources and habitats (namely geological substrates and land cover), the dispersal pathways and associated propagule pressure due to trade and traffic, and the proximity many urban hubs have to rivers. Here we explored how richness and proportions of alien species introduced after the discovery of the Americas (so-called neophytes), can be explained by environmental covariates along the urbanization gradient from very rural to very urbanized grid cells. We tested whether there is a specific urban effect, either as an interaction effect of urbanized areas that changes these general relationships, or if there is an effect due to specific urban conditions. We found that the environmental covariates explaining richness as well as proportions of neophytes remain largely the same across the rural–urban gradient. There is, however, an effect of urbanized area on neophyte species richness and proportions, which also incorporates strictly urban conditions. Rivers, roads and railroads contribute disproportionately less to the increase of neophyte species diversity in more urbanized areas, which might be due to the already higher number of neophytes in cities. We argue that the conditions determining neophyte richness in cities are not fundamentally different from those in rural environments, but extend on the same environmental axis, i.e. having different positions along the gradient towards the upper end.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aronson MFJ, La Sorte FA, Nilon CH et al (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc B 281:20133330

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bjornstad ON (2013) ncf: spatial nonparametric covariance functions. R package version 1.1-5

  3. Botham MS, Rothery P, Hulme PE, Hill MO, Preston CD, Roy DB (2009) Do urban areas act as foci for the spread of alien plant species? An assessment of temporal trends in the UK. Divers Distrib 15:338–345

    Article  Google Scholar 

  4. Brandes D (2002) Die Hafenflora von Braunschweig. Elektronische Veroffentlichung 23

  5. Bundesamt für Kartographie und Geodäsie (2012) Digitales Landbedeckungsmodell für Deutschland—LBM-DE2012. Bundesamt für Kartographie und Geodäsie, Leipzig

  6. Bundesanstalt für Geowissenschaften und Rohstoffe (1993) Geologische Karte der Bundesrepublik Deutschland 1:1 000 000. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  7. Burton ML, Samuelson LJ, Pan S (2005) Riparian woody plant diversity and forest structure along an urban-rural gradient. Urban Ecosyst 8:93–106

    Article  Google Scholar 

  8. Carl G, Kühn I (2007) Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol Model 207:159–170

    Article  Google Scholar 

  9. Carl G, Kühn I (2017) Spind: a package for computing spatially corrected accuracy measures. Ecography 40:675–682

    Article  Google Scholar 

  10. Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007) A century of the ornamental plant trade and its impact on invasion success. Divers Distrib 13:527–534

    Article  Google Scholar 

  11. Deutschewitz K, Lausch A, Kühn I, Klotz S (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Global Ecol Biogeogr 12:299–311

    Article  Google Scholar 

  12. Diggle PJ, Liang KY, Zeger SL (1995) Analysis of longitudinal data. Clarendon, Oxford

    Google Scholar 

  13. Dormann CF, McPherson JM, Araujo MB et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  14. Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  15. Essl F, Bacher S, Blackburn TM et al (2015) Crossing frontiers in tackling pathways of biological invasions. BioScience 65:769–782

    Article  Google Scholar 

  16. Ewald J (2003) The calcareous riddle: why are there so many calciphilous species in the central European flora? Folia Geobot 38:357–366

    Article  Google Scholar 

  17. Francis AP, Currie DJ (2003) A globally consistent richness-climate relationship for angiosperms. Am Nat 161:523–536

    Article  PubMed  Google Scholar 

  18. Fronzek S, Carter TR, Jylhä K (2012) Representing two centuries of past and future climate for assessing risks to biodiversity in Europe. Global Ecol Biogeogr 21:19–35

    Article  Google Scholar 

  19. Guisan A, Rahbek C (2011) SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr 38:1433–1444

    Article  Google Scholar 

  20. Haeupler H (1974) Statistische Auswertungen von Punktrasterkarten der Gefäßpflanzenflora Süd-Niedersachsens. Scr Geobot 8:1–141

    Google Scholar 

  21. Hanspach J, Kühn I, Pyšek P, Boos E, Klotz S (2008) Correlates of naturalization and occupancy of introduced ornamentals in Germany. Perspect Plant Ecol Evol Syst 10:241–250

    Article  Google Scholar 

  22. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  23. Hulme PE (2011) Addressing the threat to biodiversity from botanic gardens. Trends Ecol Evol 26:168–174

    Article  PubMed  Google Scholar 

  24. Klotz S, Il’minskich NG (1988) Uvelicivaetsja li schodstvo flor gorodov v chode ich istoriceskogo razvitija? In: Gorchakovskij PL, Grodzinskij AM, Il’minskich NG, Mirkin BM, Tuganaev VV (eds) Tezisy vsesozusnogo sovescanija Agrofitozenozy i ecologiceskie puti povysenija ich stabil’nosti i produktivnosti. Udmurtskij Gosudarstvennij universitet izevsk, Izevsk, pp 134–136

    Google Scholar 

  25. Knapp S, Kühn I (2012) Origin matters: widely distributed native and non-native species benefit from different functional traits. Ecol Lett 15:696–703

    Article  PubMed  Google Scholar 

  26. Knapp S, Kühn I, Schweiger O, Klotz S (2008) Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol Lett 11:1054–1064

    Article  PubMed  Google Scholar 

  27. Kopecký K (1988) Einfluss der Strassen auf die Synanthropisierung der Flora und Vegetation nach Beobachtungen in der Tschechoslowakei. Folia Geobot 23:145–171

    Article  Google Scholar 

  28. Kowarik I (1995) On the role of alien species in urban flora and vegetation. In: Pysek P, Prach K, Rejmánek M, Wade M (eds) Plant invasions: general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 85–103

    Google Scholar 

  29. Kowarik I (2005) Urban ornamentals escaped from cultivation. In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, pp 97–121

  30. Kowarik I (2010) Biologische invasionen: neophyten und neozoen in mitteleuropa. Ulmer, Stuttgart

    Google Scholar 

  31. Kühn I (2007) Incorporating spatial autocorrelation may invert observed patterns. Divers Distrib 13:66–69

    Google Scholar 

  32. Kühn I, Dormann CF (2012) Less than eight (and a half) misconceptions of spatial analysis. J Biogeogr 39:995–998

    Article  Google Scholar 

  33. Kühn I, Klotz S (2002) Floristischer Status und gebietsfremde Arten. In: Klotz S, Kühn I, Durka W (eds) BIOLFLOR—Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Bundesamt für Naturschutz, Bonn, pp 47–56

    Google Scholar 

  34. Kühn I, Klotz S (2006) Urbanisation and homogenization—comparing the floras of urban and rural areas in Germany. Biol Conserv 127:292–300

    Article  Google Scholar 

  35. Kühn I, Bierman SM, Durka W, Klotz S (2006) Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. New Phytol 172:127–139

    Article  PubMed  Google Scholar 

  36. Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6:749–764

    Google Scholar 

  37. Kühn I, Brandl R, May R, Klotz S (2003) Plant distribution patterns in Germany: will aliens match natives? Feddes Repert 114:559–573

    Article  Google Scholar 

  38. Lambdon PW, Pyšek P, Basnou C et al (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  39. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  40. Maurel N, Hanspach J, Kühn I, Pyšek P, van Kleunen M (2016) Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Glob Ecol Biogeogr 25:1500–1509

    Article  Google Scholar 

  41. McLean P, Gallien L, Wilson JRU, Gaertner M, Richardson DM (2017) Small urban centres as launching sites for plant invasions in natural areas: insights from South Africa. Biol Invasions. doi:10.1007/s10530-017-1600-4

    Google Scholar 

  42. Moser D, Dullinger S, Englisch T et al (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. J Biogeogr 32:1117–1127

    Article  Google Scholar 

  43. Netzwerk Phytodiversität Deutschlands e.V., Bundesamt für Naturschutz (2013) Verbreitungsatlas der Farn-und Blütenpflanzen Deutschlands. Bundesamt für Naturschutz, Bonn, 912 pp

    Google Scholar 

  44. Nobis MP, Jaeger JAG, Zimmermann NE (2009) Neophyte species richness at the landscape scale under urban sprawl and climate warming. Divers Distrib 15:928–939

    Article  Google Scholar 

  45. Padayachee AL, Irlich UM, Faulkner KT, Gaertner M, Procheş S, Wilson JRU, Rouget M (2017) How do invasive species travel to and through urban environments? Biol Invasions. doi:10.1007/s10530-017-1596-9

    Google Scholar 

  46. Pino J, Font X, Carbó J, Jové M, Pallarès L (2005) Large-scale correlates of alien plant invasion in Catalonia (NE of Spain). Biol Conserv 122:339–350

    Article  Google Scholar 

  47. Planty-Tabacchi AM, Tabacchi E, Salinas Bonillo MJ (2001) Invasions of river corridors by exotic plant species: patterns and causes. In: Brundu G, Brock J, Camarda I, Child L, Wade M (eds) Plant invasions: species ecology and ecosystem management. Backhuys, Leiden, pp 221–234

    Google Scholar 

  48. Pyšek P (1993) Factors affecting the diversity of flora and vegetation in central European settlements. Vegetatio 106:89–100

    Article  Google Scholar 

  49. Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53:131–143

    Article  Google Scholar 

  50. Pyšek P, Křivánek M, Jarošík V (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90:2734–2744

    Article  PubMed  Google Scholar 

  51. Pyšek P, Manceur AM, Alba C et al (2015) Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96:762–774

    Article  PubMed  Google Scholar 

  52. QGIS Development Team (2015) GIS geographic information system. Open Source Geospatial Foundation. http://qgis.osgeo.org

  53. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  54. Ricotta C, Celesti-Grapow L, Kühn I et al (2014) Geographical constraints are stronger than invasion patterns for European urban floras. Plos One 9:e85661

    Article  PubMed  PubMed Central  Google Scholar 

  55. Säumel I, Kowarik I (2010) Urban rivers as dispersal corridors for primarily wind-dispersed invasive tree species. Landsc Urban Plan 94:244–249

    Article  Google Scholar 

  56. Schadek U, Strauss B, Biedermann R, Kleyer M (2009) Plant species richness, vegetation structure and soil resources of urban brownfield sites linked to successional age. Urban Ecosyst 12:115–126

    Article  Google Scholar 

  57. Schroeder FG (1969) Zur Klassifizierung der Anthropochoren. Vegetatio 16:225–238

    Google Scholar 

  58. Seebens H, Essl F, Dawson W et al (2015) Global trade will accelerate plant invasions in emerging economies under climate change. Global Change Biol 21:4128–4140

    Article  Google Scholar 

  59. Štajerová K, Šmilauer P, Brůna J, Pyšek P (2017) Distribution of invasive plants in urban environment is strongly spatially structured. Landsc Ecol 32:681–692

    Article  Google Scholar 

  60. Stohlgren TJ, Barnett DT, Kartesz JT (2003) The rich get richer: patterns of plant invasions in the United States. Front Ecol Environ 1:11–14

    Article  Google Scholar 

  61. Vilà M, Pujadas J (2001) Land-use and socio-economic correlates of plant invasions in European and North African countries. Biol Conserv 100:397–401

    Article  Google Scholar 

  62. von der Lippe M, Kowarik I (2008) Do cities export biodiversity? Traffic as dispersal vector across urban-rural gradients. Divers Distrib 14:18–25

    Article  Google Scholar 

  63. von der Lippe M, Kowarik I (2012) Interactions between propagule pressure and seed traits shape human-mediated seed dispersal along roads. Perspect Plant Ecol Evol Syst 14:123–130

    Article  Google Scholar 

  64. von der Lippe M, Bullock JM, Kowarik I, Knopp T, Wichmann M (2013) Human-mediated dispersal of seeds by the airflow of vehicles. Plos One 8:e52733

    Article  PubMed  PubMed Central  Google Scholar 

  65. Walther G-R, Roque A, Hulme PE et al (2009) Alien species in a warmer world—risks and opportunities. Trends Ecol Evol 24:686–693

    Article  PubMed  Google Scholar 

  66. Wania A, Kühn I, Klotz S (2006) Plant richness patterns of plants in agricultural and urban landscapes in Central Germany—spatial gradients of species richness. Landsc Urban Plan 75:97–110

    Article  Google Scholar 

  67. Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42:121–130

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the work of thousands of volunteers mapping the flora of Germany which is incorporated in www.floraweb.de, provided and maintained by the Federal Agency for Nature Conservation on behalf of the German Network for Phytodiversity (NetPhyD). We thank Sarah Passonneau for improving the language. Petr Pyšek and two anonymous referees provided valuable comments on the manuscript. This work was funded by the Programme Oriented Funding of the Helmholtz Association to the research programme “Terrestrial Environment”, Topic “Land Use, Biodiversity and Ecosystem Services/Renewable Energies”, Integrated Project T11 (Emerging Ecosystems). An early version of this paper was presented at a workshop on ‘Non-native species in urban environments’ hosted and funded by the DST-NRF Centre of Excellence for Invasion Biology (C·I·B) in Stellenbosch, South Africa, in November 2016. Comments and suggestions from participants at the workshop improved the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ingolf Kühn.

Additional information

Guest Editors: Mirijam Gaertner, John R.U. Wilson, Marc W. Cadotte, J. Scott MacIvor, Rafael D. Zenni and David M. Richardson/Urban Invasions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 195 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kühn, I., Wolf, J. & Schneider, A. Is there an urban effect in alien plant invasions?. Biol Invasions 19, 3505–3513 (2017). https://doi.org/10.1007/s10530-017-1591-1

Download citation

Keywords

  • Cities
  • Environmental covariates
  • Generalized estimating equations
  • Neophytes
  • Species richness