Skip to main content

Advertisement

Log in

Are urban systems beneficial, detrimental, or indifferent for biological invasion?

  • URBAN INVASIONS
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Urban environments are often seen as unique or degraded habitats that both present hardships for some sensitive species and provide opportunities to others. Non-indigenous species (NIS) are commonly referenced in the latter group, and are comprised of species that can tolerate the unique conditions or capitalize on the opportunities found in urban environments. Moreover, these urban beneficiaries may be those that normally cannot overcome competitive interactions in intact native communities, but find opportunity to flourish in urban habitats. We ask the question: do NIS benefit from urbanization? We answer this question using three strategies. First, we explore the problem conceptually, using community assembly theory. Second, we perform a broad literature review. Finally, we analyze studies with sufficient information using a meta-analysis. We show that the available evidence supports the proposition that NIS benefit from urbanization, with NIS obtaining higher abundances and greater diversity in more urbanized habitats. There were only 43 studies that measured NIS abundance and diversity while adequately quantifying the degree of urbanization surrounding plots, and effect sizes (measured by Hedge’s D) reveal that NIS obtain higher abundances in more urbanized habitats, and especially for invertebrates. Despite the intense interest in NIS dynamics and impacts, we note a general dearth of robust studies that adequately quantify ‘urbanization’, and we end with a general call for more detailed research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Airoldi L, Bulleri F (2011) Anthropogenic disturbance can determine the magnitude of opportunistic species responses on marine urban infrastructures. PLoS ONE 6:e22985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akasaka M, Osawa T, Ikegami M (2015) The role of roads and urban area in occurrence of an ornamental invasive weed: a case of Rudbeckia laciniata L. Urban Ecosyst 18:1021–1030

    Article  Google Scholar 

  • Alberti M (2015) Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol Evol 30:114–126

    Article  PubMed  Google Scholar 

  • Allouche O, Kalyuzhny M, Moreno-Rueda G et al (2012) Area-heterogeneity tradeoff and the diversity of ecological communities. Proc Natl Acad Sci 109:17495–17500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Conserv 132:183–198

    Article  Google Scholar 

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122

    Article  Google Scholar 

  • Antunes P, Sanderson L (2013) The exotic invasive plant Vincetoxicum rossicum is a strong competitor even outside its current realized climatic temperature range. NeoBiota 16:1

    Article  Google Scholar 

  • Ariori CO (2014) Plant invasion along an urban-to-rural gradient. University of Connecticut, Connecticut, p 538

    Google Scholar 

  • Aronson MF, La Sorte FA, Nilon CH et al (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. In: Proceedings of the Royal Society of London B: Biological Sciences, p 20133330

  • Aronson MJ, Handel S, La Puma I et al (2015) Urbanization promotes non-native woody species and diverse plant assemblages in the New York metropolitan region. Urban Ecosyst 18:31–45

    Article  Google Scholar 

  • Barthell JF, Randall JM, Thorp RW et al (2001) Promotion of seed set in yellow star-thistle by honey bees: evidence of an invasive mutualism. Ecol Appl 11:1870–1883

    Article  Google Scholar 

  • Basnou C, Iguzquiza J, Pino J (2015) Examining the role of landscape structure and dynamics in alien plant invasion from urban Mediterranean coastal habitats. Landsc Urban Plan 136:156–164

    Article  Google Scholar 

  • Bergerot B, Fontaine B, Renard M et al (2010) Preferences for exotic flowers do not promote urban life in butterflies. Landsc Urban Plan 96:98–107

    Article  Google Scholar 

  • Bertness MD, Coverdale TC (2013) An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod. Ecology 94:1937–1943

    Article  PubMed  Google Scholar 

  • Blair RB, Johnson EM (2008) Suburban habitats and their role for birds in the urban–rural habitat network: points of local invasion and extinction? Landsc Ecol 23:1157–1169

    Article  Google Scholar 

  • Bongard C, Butler K, Fulthorpe R (2013) Investigation of fungal root colonizers of the invasive plant Vincetoxicum rossicum and co-occurring local native plants in a field and woodland area in Southern Ontario. Nat Conserv 4:55

    Article  Google Scholar 

  • Borgmann KL, Rodewald AD (2005) Forest restoration in urbanizing landscapes: interactions between land uses and exotic shrubs. Restor Ecol 13:334–340

    Article  Google Scholar 

  • Bowers MA, Breland B (1996) Foraging of gray squirrels on an urban–rural gradient: use of the GUD to assess anthropogenic impact. Ecol Appl 6:1135–1142

    Article  Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  • Cadotte MW (2015) Taming the ‘New Wild’: tackling the good and the bad with invasive species. Biol Invasions 17:3067–3072

    Article  Google Scholar 

  • Cadotte MW, Lovett-Doust J (2001) Ecological and taxonomic differences between native and introduced plants of southwestern Ontario. Ecoscience 8:230–238

    Article  Google Scholar 

  • Cadotte MW, Tucker CM (2017) Should environmental filtering be abandoned? Trends Ecol Evol 32:429–437

    Article  PubMed  Google Scholar 

  • Cappuccino N (2004) Allee effect in an invasive alien plant, pale swallow-wort Vincetoxicum rossicum (Asclepiadaceae). Oikos 106:3–8

    Article  Google Scholar 

  • Caswell H, Lensink R, Neubert MG (2003) Demography and dispersal: life table response experiments for invasion speed. Ecology 84:1968–1978

    Article  Google Scholar 

  • Chen X, Wang W, Liang H et al (2014) Dynamics of ruderal species diversity under the rapid urbanization over the past half century in Harbin, Northeast China. Urban Ecosyst 17:455–472

    Article  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Chesson P, Huntly N (1997) The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am Nat 150:519–553

    Article  CAS  PubMed  Google Scholar 

  • Chytrý M, Jarošík V, Pyšek P et al (2008) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553

    Article  PubMed  Google Scholar 

  • Colautti RI, MacIsaac HJ (2004) A neutral terminology to define ‘invasive’ species. Divers Distrib 10:135–141

    Article  Google Scholar 

  • Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037

    Article  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Corlett RT (2006) Figs (Ficus, Moraceae) in urban Hong Kong, South China. Biotropica 38:116–121

    Google Scholar 

  • Cusack DF, Lee JK, McCleery TL et al (2015) Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban–rural tropical forest gradient. Glob Change Biol 21:4481–4496

    Article  Google Scholar 

  • Dale MR, Fortin M-J (2014) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • D’antonio C, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10:703–713

    Article  Google Scholar 

  • Davis MA, Chew MK, Hobbs RJ et al (2011) Don’t judge species on their origins. Nature 474:153–154

    Article  CAS  PubMed  Google Scholar 

  • Dickson TL, Foster BL (2008) The relative importance of the species pool, productivity and disturbance in regulating grassland plant species richness: a field experiment. J Ecol 96:937–946

    Article  Google Scholar 

  • DiTommaso A, Lawlor FM, Darbyshire SJ (2005) The biology of invasive alien plants in Canada. 2. Cynanchum rossicum (Kleopow) Borhidi [= Vincetoxicum rossicum (Kleopow) Barbar.] and Cynanchum louiseae (L.) Kartesz & Gandhi [= Vincetoxicum nigrum (L.) Moench]. Can J Plant Sci 85:243–263

    Article  Google Scholar 

  • Douglass C, Weston L, DiTommaso A (2009) Black and pale swallow-wort (Vincetoxicum nigrum and V. rossicum): the biology and ecology of two perennial, exotic and invasive vines. Management of invasive weeds. Springer, New York, pp 261–277

    Google Scholar 

  • Downey PO, Richardson DM (2016) Alien plant invasions and native plant extinctions: a six-threshold framework. AoB Plants 8:plw047

    Article  PubMed  PubMed Central  Google Scholar 

  • Ernst C, Cappuccino N (2005) The effect of an invasive alien vine, Vincetoxicum rossicum (Asclepiadaceae), on arthropod populations in Ontario old fields. Biol Invasions 7:417–425

    Article  Google Scholar 

  • Ewel JJ, Putz FE (2004) A place for alien species in ecosystem restoration. Front Ecol Environ 2:354–360

    Article  Google Scholar 

  • Faeth SH, Warren PS, Shochat E et al (2005) Trophic dynamics in urban communities. Bioscience 55:399–407

    Article  Google Scholar 

  • Ferreira-Filho PJ, Piña-Rodrigues F, Silva J et al (2015) The exotic wasp Megastigmus transvaalensis (Hymenoptera: Torymidae): first record and damage on the Brazilian peppertree, Schinus terebinthifolius drupes, in São Paulo, Brazil. An Acad Bras Ciênc 87:2091–2095

    Article  PubMed  Google Scholar 

  • Funk JL, Cleland EE, Suding KN et al (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23:695–703

    Article  PubMed  Google Scholar 

  • Gaertner M, Larson BMH, Irlich UM et al (2016) Managing invasive species in cities: a framework from Cape Town, South Africa. Landsc Urban Plan 151:1–9

    Article  Google Scholar 

  • Gavier-Pizarro GI, Radeloff VC, Stewart SI et al (2010) Housing is positively associated with invasive exotic plant species richness in New England, USA. Ecol Appl 20:1913–1925

    Article  PubMed  Google Scholar 

  • Gering JC, Blair RB (1999) Predation on artificial bird nests along an urban gradient: predatory risk or relaxation in urban environments? Ecography 22:532–541

    Article  Google Scholar 

  • Golivets M (2014) Ecological and biological determination of invasion success of non-native plant species in urban woodlands with special regard to short-lived monocarps. Urban Ecosyst 17:291–303

    Article  Google Scholar 

  • Gray ER, van Heezik Y (2015) Exotic trees can sustain native birds in urban woodlands. Urban Ecosyst 19:315–329

    Article  Google Scholar 

  • Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31

    Article  Google Scholar 

  • Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474

    Article  PubMed  Google Scholar 

  • Helmus MR, Mahler DL, Losos JB (2014) Island biogeography of the Anthropocene. Nature 513:543–546

    Article  CAS  PubMed  Google Scholar 

  • Heneghan L, Steffen J, Fagen K (2007) Interactions of an introduced shrub and introduced earthworms in an Illinois urban woodland: impact on leaf litter decomposition. Pedobiologia 50:543–551

    Article  Google Scholar 

  • Huston M, Smith T (1987) Plant succession: life history and competition. Am Nat 130:168–198

    Article  Google Scholar 

  • Ives CD, Hose GC, Nipperess DA et al (2011) Environmental and landscape factors influencing ant and plant diversity in suburban riparian corridors. Landsc Urban Plan 103:372–382

    Article  Google Scholar 

  • Keller RP, Cadotte MW, Sandiford G (2014) Invasive species in a globalized world. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kendle AD, Rose JE (2000) The aliens have landed! What are the justifcations for `native only’ policies in landscape plantings? Landsc Urban Plan 47:19–31

    Article  Google Scholar 

  • Knapp S, Dinsmore L, Fissore C et al (2012) Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology 93:S83–S98

    Article  Google Scholar 

  • Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983

    Article  CAS  PubMed  Google Scholar 

  • Kraft NJB, Adler PB, Godoy O et al (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599

    Article  Google Scholar 

  • Kricsfalusy VV, Miller GC (2008) Invasion and distribution of Cynanchum rossicum (Asclepiadaceae) in the Toronto region, Canada, with remarks on its taxonomy. Thaiszia J Bot 18:21–36

    Google Scholar 

  • Ladd D, Cappuccino N (2005) A field study of seed dispersal and seedling performance in the invasive exotic vine Vincetoxicum rossicum. Botany 83:1181–1188

    Google Scholar 

  • Lake JC, Leishman MR (2004) Invasion success of exotic in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226

    Article  Google Scholar 

  • Lee TD, Perkins AL, Campbell AS et al (2015) Incipient invasion of urban and forest habitats in New Hampshire, USA, by the nonnative tree, Kalopanax septemlobus. Invasive Plant Sci Manag 8:111–121

    Article  Google Scholar 

  • Levine JM, Vila M, D’Antonio CM et al (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond Ser B Biol Sci 270:775–781

    Article  Google Scholar 

  • Li S, Cadotte MW, Meiners SJ et al (2015) The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol Lett 18:1285–1292

    Article  PubMed  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Loyd KAT, Hernandez SM, Carroll JP et al (2013) Quantifying free-roaming domestic cat predation using animal-borne video cameras. Biol Conserv 160:183–189

    Article  Google Scholar 

  • Ma C, Li S-P, Pu Z et al (2016) Different effects of invader–native phylogenetic relatedness on invasion success and impact: a meta-analysis of Darwin’s naturalization hypothesis. Proc R Soc B Biol Sci 283:20160663

    Article  Google Scholar 

  • MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615

    Article  Google Scholar 

  • MacIvor JS, Ruttan A, Salehi B (2015) Exotics on exotics: pollen analysis of urban bees visiting Sedum on a green roof. Urban Ecosyst 18:419–430

    Article  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  PubMed  Google Scholar 

  • McCune J, Vellend M (2015) Using plant traits to predict the sensitivity of colonizations and extirpations to landscape context. Oecologia 178:511–524

    Article  PubMed  Google Scholar 

  • McDonnell M, Hahs A (2013) The future of urban biodiversity research: moving beyond the ‘low-hanging fruit’. Urban Ecosyst 16:397–409

    Article  Google Scholar 

  • Milbrath LR (2008) Growth and reproduction of invasive Vincetoxicum rossicum and V. nigrum under artificial defoliation and different light environments. Botany 86:1279–1290

    Article  Google Scholar 

  • Moles AT, Flores-Moreno H, Bonser SP et al (2012) Invasions: the trail behind, the path ahead, and a test of a disturbing idea. J Ecol 100:116–127

    Article  Google Scholar 

  • Moreira-Arce D, de la Barrera F, Bustamante RO (2015) Distance to suburban/wildland border interacts with habitat type for structuring exotic plant communities in a natural area surrounding a metropolitan area in central Chile. Plant Ecol Divers 8:363–370

    Article  Google Scholar 

  • Moro MF, Castro ASF (2015) A check list of plant species in the urban forestry of Fortaleza, Brazil: where are the native species in the country of megadiversity? Urban Ecosyst 18:47–71

    Article  Google Scholar 

  • Naeem S, Knops JMH, Tilman D et al (2000) Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91:97–108

    Article  Google Scholar 

  • Nielsen AB, van den Bosch M, Maruthaveeran S et al (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst 17:305–327

    Article  Google Scholar 

  • Parker IM (1997) Pollinator limitation of Cytisus scoparius (Scotch broom), an invasive exotic shrub. Ecology 78:1457–1470

    Article  Google Scholar 

  • Pataki DE, McCarthy HR, Gillespie T et al (2013) A trait-based ecology of the Los Angeles urban forest. Ecosphere 4:art72

    Article  Google Scholar 

  • Pearce F (2015) The new wild—why invasive species will be nature’s salvation. Beacon Press, Boston

    Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Petren K, Case TJ (1998) Habitat structure determines competition intensity and invasion success in gecko lizards. Proc Natl Acad Sci USA 95:11739–11744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manag 57:239–251

    Article  Google Scholar 

  • Pickett STA, McDonnell MJ (1989) Changing perspectives in community dynamics: a theory of successional forces. Trends Ecol Evol 4:241–245

    Article  CAS  PubMed  Google Scholar 

  • Pickett ST, Cadenasso ML, Grove JM et al (2008) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Urban Ecol. Springer, pp 99–122

  • Pickett STA, Meiners SJ, Cadenasso ML (2011) Domain and propositions of succession theory. In: Scheiner SM, Willig MR (eds) The theory of ecology. University of Chicago Press, Chicago, pp 185–216

    Google Scholar 

  • Pickett ST, Cadenasso ML, Childers DL et al (2016) Evolution and future of urban ecological science: ecology in, of, and for the city. Ecosyst Health Sustain 2:e01229

    Article  Google Scholar 

  • Pokorny ML, Sheley RL, Zabinski CA et al (2005) Plant functional group diversity as a mechanism for invasion resistance. Restor Ecol 13:448–459

    Article  Google Scholar 

  • Potgieter LJ, Gaertner M, Kueffer C, Larson BMH, Livingstone S, O’Farrell, P, Richardson DM (2017) Alien plants as mediators of ecosystem services and disservices in urban systems: a global review. Biol Invasions. doi:10.1007/s10530-017-1589-8

  • Prange S, Gehrt SD, Wiggers EP (2003) Demographic factors contributing to high raccoon densities in urban landscapes. J Wildl Manag 67:324–333

    Article  Google Scholar 

  • Pyšek A, PyšEk P, Jarošík V et al (2003) Diversity of native and alien plant species on rubbish dumps: effects of dump age, environmental factors and toxicity. Divers Distrib 9:177–189

    Article  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE et al (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci 107:12157–12162

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE et al (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737

    Article  Google Scholar 

  • Pyšek P, Blackburn TM, García-Berthou E et al (2017) Displacement and local extinction of native and endemic species. Impact of biological invasions on ecosystem services. Springer, New York, pp 157–175

    Book  Google Scholar 

  • Ricotta C, La Sorte FA, Pysek P et al (2009) Phyloecology of urban alien floras. J Ecol 97:1243–1251

    Article  Google Scholar 

  • Riley SP, Busteed GT, Kats LB et al (2005) Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams. Conserv Biol 19:1894–1907

    Article  Google Scholar 

  • Rodewald AD, Rohr RP, Fortuna MA et al (2015) Does removal of invasives restore ecological networks? An experimental approach. Biol Invasions 17:2139–2146

    Article  Google Scholar 

  • Sagoff M (2005) Do non-native species threaten the natural environment? J Agric Environ Ethics 18:215–236

    Article  Google Scholar 

  • Salisbury A, Armitage J, Bostock H et al (2015) Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): should we plant native or exotic species? J Appl Ecol 52:1156–1164

    Article  CAS  Google Scholar 

  • Schneider SC, Miller JR (2014) Response of avian communities to invasive vegetation in urban forest fragments. Condor 116:459–471

    Article  Google Scholar 

  • Schwartz MW, Thorne JH, Viers JH (2006) Biotic homogenization of the California flora in urban and urbanizing regions. Biol Conserv 127:282–291

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Shochat E, Lerman SB, Anderies JM et al (2010) Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60:199–208

    Article  Google Scholar 

  • Simberloff D (2005) Non-native species do threaten the natural environment! J Agric Environ Ethics 18:595–607

    Article  Google Scholar 

  • Simberloff D (2011) Non-natives: 141 scientists object. Nature 475:36

    Article  CAS  PubMed  Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32

    Article  Google Scholar 

  • Smith RM, Thompson K, Hodgson JG et al (2006) Urban domestic gardens (IX): composition and richness of the vascular plant flora, and implications for native biodiversity. Biol Conserv 129:312–322

    Article  Google Scholar 

  • Soh MCK, Sodhi NS, Lim SLH (2006) High sensitivity of montane bird communities to habitat disturbance in Peninsular Malaysia. Biol Conserv 129:149–166

    Article  Google Scholar 

  • Strauss SY, Webb CO, Salamin N (2006) Exotic taxa less related to native species are more invasive. Proc Natl Acad Sci USA 103:5841–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan JJ, Timmins SM, Williams PA (2005) Movement of exotic plants into coastal native forests from gardens in northern New Zealand. N Z J Ecol 29:1–10

    Google Scholar 

  • Tommasi D, Miro A, Higo HA et al (2004) Bee diversity and abundance in an urban setting. Can Entomol 136:851–869

    Article  Google Scholar 

  • Vellend M, Baeten L, Myers-Smith IH et al (2013) Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc Natl Acad Sci 110:19456–19459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von der Lippe M, Kowarik I (2007) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21:986–996

    Article  PubMed  Google Scholar 

  • Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218

    Article  Google Scholar 

  • Walker JS, Grimm NB, Briggs JM et al (2009) Effects of urbanization on plant species diversity in central Arizona. Front Ecol Environ 7:465–470

    Article  Google Scholar 

  • Wan S, Qin P, Liu J et al (2009) The positive and negative effects of exotic Spartina alterniflora in China. Ecol Eng 35:444–452

    Article  Google Scholar 

  • Watts AG, Lukasik VM, Fortin M-J et al (2015) Urbanization, grassland, and diet influence coyote (Canis latrans) parasitism structure. EcoHealth 12:645–659

    Article  PubMed  Google Scholar 

  • Wei A, Chow-Fraser P (2006) Synergistic impact of water level fluctuation and invasion of Glyceria on Typha in a freshwater marsh of Lake Ontario. Aquat Bot 84:63–69

    Article  Google Scholar 

  • Wilby RL, Perry GLW (2006) Climate change, biodiversity and the urban environment: a critical review based on London, UK. Prog Phys Geogr 30:73–98

    Article  Google Scholar 

  • Williams NSG, Schwartz MW, Vesk PA et al (2009) A conceptual framework for predicting the effects of urban environments on floras. J Ecol 97:4–9

    Article  Google Scholar 

  • Wu SH, Sun HT, Teng YC et al (2010) Patterns of plant invasions in China: taxonomic, biogeographic, climatic approaches and anthropogenic effects. Biol Invasions 12:2179–2206

    Article  Google Scholar 

  • Yasui S-LE (2016) Intraspecific variation and phenotypic plasticity in the invasive vine Vincetoxicum rossicum. University of Toronto, Toronto

    Google Scholar 

  • Zisenis M (2015) Alien plant species: a real fear for urban ecosystems in Europe? Urban Ecosyst 18:355–370

    Article  Google Scholar 

Download references

Acknowledgements

An early version of this paper was presented at the workshop on “non-native species in urban environments: Patterns, processes, impacts and challenges” that was hosted by the DST-NRF Centre of Excellence for Invasion Biology in Stellenbosch, South Africa, in November 2016. We are grateful to the helpful comments and suggestions from D. Richardson and two anonymous reviewers. We wish to acknowledge support from the Natural Sciences and Engineering Research Council of Canada (#386,151), an Early Researcher Award from the Ontario Ministry of Research and Innovation (ER13-09-121), and the TD Chair of Urban Forest Conservation and Biology endowment, all awarded to MWC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc W. Cadotte.

Additional information

Guest Editors: Mirijam Gaertner, John R. U. Wilson, Marc W. Cadotte, J. Scott MacIvor, Rafael D. Zenni and David M. Richardson/Urban Invasions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadotte, M.W., Yasui, S.L.E., Livingstone, S. et al. Are urban systems beneficial, detrimental, or indifferent for biological invasion?. Biol Invasions 19, 3489–3503 (2017). https://doi.org/10.1007/s10530-017-1586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1586-y

Keywords

Navigation