Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees

Abstract

Twenty-five years ago, Arctomecon humilis, a pollinator-dependent, endangered poppy globally restricted to the extreme northeastern Mojave Desert in southwestern Utah, was pollinated by native bee species and the European honey bee. Follow-up studies beginning in 2012 failed to find the two most important native bee pollinator species, one of which, Perdita meconis, is a strict poppy specialist. We had four objectives: (1) confirm the status of formerly important native bee pollinators; (2) determine the role of the Africanized honey bee which reportedly invaded southern Utah in 2008; (3) examine the effect of the ostensible change in pollinator fauna on fruit set in four populations; (4) describe the pollination proficiency of species that presently visit poppy flowers. For the fourth consecutive survey, P. meconis was absent; its local extinction in Utah now seems certain. Another previously important native pollinator, Eucera quadricincta, was very rare. Also uncommon was the European honey bee, having been largely replaced by Africanized honey bees which have become, in most populations, the prevalent pollinator. Africanized bees forage early in the day and quickly strip flowers of their copious pollen leaving little for native bees. We argue that the invasion of southern Utah by Africanized bees is the most likely cause of the severe disruption of the A. humilis pollination system. The ascension of the Africanized bee is also associated with reduced fruit set in all poppy populations, especially those where plants are sparse. Arctomecon humilis now appears to depend mostly on an invasive species for pollination.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918. doi:10.1016/j.cub.2009.03.071

    CAS  Article  PubMed  Google Scholar 

  2. Alessa L, Chapin FS (2008) Anthropogenic biomes: a key contribution to earth-system science. Trends Ecol Evol 23:529–531. doi:10.1016/j.tree.2008.07.002

    Article  PubMed  Google Scholar 

  3. Baum KA, Tchakerian MD, Thoenes SC, Coulson RN (2008) Africanized honey bees in urban environments: a spatio-temporal analysis. Landsc Urban Plan 85:123–132. doi:10.1016/j.landurbplan.2007.10.005

    Article  Google Scholar 

  4. Cane JH, Sipes SS (2006) Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty. In: Waser NM, Ollerton J (eds) Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago and London, pp 99–122

    Google Scholar 

  5. Carneiro LT, Martins CF (2012) Africanized honey bees pollinate and preempt the pollen of Spondias mombin (Anacardiaceae) flowers. Apidologie 43:474–486. doi:10.1007/s13592-011-0116-7

    Article  Google Scholar 

  6. Danforth BN (1999) Emergence dynamics and bet hedging in a desert bee, Perdita portalis. Proc R Soc B 266:1985–1994. doi:10.1098/rspb.1999.0876

    Article  PubMed Central  Google Scholar 

  7. Danka RG, Hellmich RL, Rinderer TE, Collins AM (1987) Diet-selection ecology of tropically and temperately adapted honey bees. Anim Behav 35:1858–1863. doi:10.1016/S0003-3472(87)80078-7

    Article  Google Scholar 

  8. Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19:589–606. doi:10.1111/j.1466-8238.2010.00540.x

    Google Scholar 

  9. Franzén M, Nilsson SG (2009) Both population size and patch quality affect local extinctions and colonizations. Proc R Soc B. doi:10.1098/rspb.2009.1584

    PubMed  PubMed Central  Google Scholar 

  10. Franzén M, Nilsson SG (2013) High population variability and source-sink dynamics in a solitary bee species. Ecology 94:1400–1408. doi:10.1890/11-2260.1

    Article  PubMed  Google Scholar 

  11. Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26. doi:10.1146/132355

    Article  Google Scholar 

  12. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596. doi:10.1007/s00442-007-0752-9

    Article  PubMed  Google Scholar 

  13. Griswold TL (1993) New species of Perdita (Pygoperdita) Timberlake of the P. californica species group (Hymenptera: Andrenidae). Pan-Pac Entomol 62:183–189

    Google Scholar 

  14. Harper KT, Van Buren R (2004) Dynamics of a Dwarf Bear-poppy (Arctomecon humilis) population over a sixteen-year period. West North Am Nat 64:482–491

    Google Scholar 

  15. Harper KT, Van Buren R, Aanderud ZT (2000) The influence of interplant distance and number of flowers on seed set in Dwarf Bear-poppy (Arctomecon humilis). In: Southwestern rare and endangered plants: proceedings of the third conference. USDA-Forest Service, Rocky Mountain Research Station, Flagstaff, Arizona, pp 105–109

  16. Harrison JF, Fewell JH, Anderson KE, Loper GM (2006) Environmental physiology of the invasion of the Americas by Africanized honeybees. Integr Comp Biol 46:1110–1122. doi:10.1093/icb/icl046

    Article  PubMed  Google Scholar 

  17. Hepburn HR, Radloff SE (1998) Honeybees of Africa. Springer, Berlin

    Google Scholar 

  18. Hickerson LL (1998) The reproductive ecology, demography, and population genetic structure of Arctomecon californica Torrey & Fremont (Papaveraceae) in fragmented and unfragmented habitat. M.Sc. thesis, Utah State University

  19. Hodgson EW, Stanley CA, Roe AH, Downey D (2010) Africanized honey bees. Utah Pests Fact Sheet ENT-20-09:1–4

  20. Kaiser-Bunbury CN, Traveset A, Hansen DM (2010) Conservation and restoration of plant-animal mutualisms on oceanic islands. Perspect Plant Ecol Evol Syst 12:131–143. doi:10.1016/j.ppees.2009.10.002

    Article  Google Scholar 

  21. Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112. doi:10.1146/annurev.ecolsys.29.1.83

    Article  Google Scholar 

  22. Kiers TE, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474. doi:10.1111/j.1461-0248.2010.01538.x

    Article  Google Scholar 

  23. Knight TM, Chase JM, Hillebrand H, Holt RD (2006) Predation on mutualists can reduce the strength of trophic cascades. Ecol Lett 9:1173–1178. doi:10.1111/j.1461-0248.2006.00967.x

    Article  PubMed  Google Scholar 

  24. Kono Y, Kohn JR (2015) Range and frequency of Africanized honey bees in California (USA). PLoS ONE 10:e0137407. doi:10.1371/journal.pone.0137407

    Article  PubMed  PubMed Central  Google Scholar 

  25. Loper GM, Sammataro D, Finley J, Cole J (2006) Feral honey bees in southern Arizona, 10 years after varroa infestation. Am Bee J 146:521–524

    Google Scholar 

  26. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. doi:10.1016/S0169-5347(99)01679-1

    CAS  Article  PubMed  Google Scholar 

  27. Medina-Flores CA, Guzmán-Novoa E, Hamiduzzaman MM, Aréchiga-Flores CF, López-Carlos MA (2014) Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico. Genet Mol Res 13:7282–7293. doi:10.4238/2014.February.21.10

    CAS  Article  PubMed  Google Scholar 

  28. Minckley RL, Roulston TH (2006) Incidental mutualisms and pollen specialization among bees. In: Waser NM, Ollerton J (eds) Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 69–98

    Google Scholar 

  29. Moilanen A (2002) Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos 96:516–530. doi:10.1034/j.1600-0706.2002.960313.x

    Article  Google Scholar 

  30. Moritz RFA, Härtel S, Neumann P (2005) Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12:289–301. doi:10.2980/i1195-6860-12-3-289.1

    Article  Google Scholar 

  31. Norden BB, Krombein KV, Deyrup MA, Edirisinghe JP (2003) Biology and behavior of a seasonally aquatic bee, Perdita (Alloperdita) floridensis Timberlake (Hymenoptera: Andrenidae: Panurginae). J Kansas Entomol Soc 76:236–249

    Google Scholar 

  32. Packer L, Zayed A, Grixti JC, Ruz L, Owen RE, Vivallo F, Toro H (2005) Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees. Conserv Biol 19:195–202. doi:10.1111/j.1523-1739.2005.00601.x

    Article  Google Scholar 

  33. Pinto MA, Rubink WL, Patton JC, Coulson RN, Johnston JS (2005) Africanization in the United States: replacement of feral European honeybees (Apis mellifera L.) by an African hybrid swarm. Genetics 170:1653–1665. doi:10.1534/genetics.104.035030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Pirk CWW, Crewe RM, Moritz RFA (2017) Risks and benefits of the biological interface between managed and wild bee pollinators. Funct Ecol 31:47–55. doi:10.1111/1365-2435.12768

    Article  Google Scholar 

  35. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi:10.1016/j.tree.2010.01.007

    Article  PubMed  Google Scholar 

  36. Rabe MJ, Rosenstock SS, Nielsen DI (2005) Feral africanized honey bees (Apis mellifera) in Sonoran Desert habitats of southwestern Arizona. Southwest Nat 50:307–311. doi:10.1894/0038-4909(2005)050[0307:FAHBAM]2.0.CO;2

    Article  Google Scholar 

  37. Rangel J, Giresi M, Pinto MA, Baum KA, Rubink WL, Coulson RN, Johnston JS (2016) Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference? Ecol Evol 6:2158–2169. doi:10.1002/ece3.1974

    Article  PubMed  PubMed Central  Google Scholar 

  38. Romero GQ, Antiqueira PAP, Koricheva J (2011) A meta-analysis of predation risk effects on pollinator behaviour. PLoS ONE 6:e20689. doi:10.1371/journal.pone.0020689

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Roubik DW (2009) Ecological impact on native bees by the invasive Africanized honey bee. Acta Biol Columbiana 14:115–124

    Google Scholar 

  40. Roubik DW, Villanueva-Gutiérrez R (2009) Invasive Africanized honey bee impact on native solitary bees: a pollen resource and trap nest analysis. Biol J Linn Soc 98:152–160. doi:10.1111/j.1095-8312.2009.01275.x

    Article  Google Scholar 

  41. Roubik DW, Wolda H (2001) Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion. Popul Ecol 43:53–62. doi:10.1007/PL00012016

    Article  Google Scholar 

  42. Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  43. Schwarzbach A, Kadereit J (1999) Phylogeny of prickly poppies, Argemone (Papaveraceae), and the evolution of morphological and alkaloid characters based on ITS nrDNA sequence variation. Plant Syst Evol 218:257–279. doi:10.1007/BF01089231

    CAS  Article  Google Scholar 

  44. Severns PM, Moldenke AR (2010) Management tradeoffs between focal species and biodiversity: endemic plant conservation and solitary bee extinction. Biodivers Conserv 19:3605–3609. doi:10.1007/s10531-010-9897-7

    Article  Google Scholar 

  45. Silva DM, De Jong D (1990) Diurnal flight activity of Africanized and European honey bees. Apiacta 25:78–80

    Google Scholar 

  46. Szalanski AL, Mckern JA (2007) Multiplex PCR-RFLP diagnostics of the Africanized honey bee (Hymenoptera: Apidae). Sociobiology 50:939–946

    Google Scholar 

  47. Szalanski AL, Tripodi AD (2014) Assessing the utility of a PCR diagnostics marker for the identification of Africanized honey bee, Apis mellifera L., (Hymenoptera: Apidae) in the United States. Sociobiology 61:218–220. doi:10.13102/sociobiology.v61i2.234-236

    Article  Google Scholar 

  48. Tepedino VJ (1979) The importance of bees and other insect pollinators in maintaining floral species composition. Gt Basin Nat Mem 3:139–150

    Google Scholar 

  49. Tepedino VJ, Mull J, Griswold TL, Bryant G (2014) Reproduction and pollination of the endangered Dwarf Bear-poppy Arctomecon humilis (Papaveraceae) across a quarter century: unraveling of a pollination web? West North Am Nat 74:311–324. doi:10.3398/064.074.0306

    Article  Google Scholar 

  50. Torchio PF (1975) The biology of Perdita nuda and descriptions of its immature forms and those of its Sphecodes parasite (Hymenoptera: Apoidea). J Kansas Entomol Soc 48:257–279

    Google Scholar 

  51. Torchio PF, Tepedino VJ (1982) Parsivoltinism in three species of Osmia bees. Psyche 89:221–238. doi:10.1155/1982/60540

    Article  Google Scholar 

  52. Traveset A, Richardson DM (2014) Mutualistic interactions and biological invasions. Annu Rev Ecol Evol Syst 45:89–113. doi:10.1146/annurev-ecolsys-120213-091857

    Article  Google Scholar 

  53. United States Fish and Wildlife Service (1979) Endangered and threatened wildlife and plants; determination that Arctomecon humilis is an endangered species. Fed Regist 44:64250–64252

    Google Scholar 

  54. United States Fish and Wildlife Service (2016) Dwarf Bear-poppy Arctomecon humilis Coville. 5-year review: summary and evaluation. Mountain-Prairie Region. Utah Ecological Services Field Office, Salt Lake City, Utah

  55. Villanueava GR, Roubik DW (2006) Why are African honey bees and not European bees invasive? Pollen diet diversity in community experiments. Apidologie 35:481–491. doi:10.1051/apido:2004041

    Article  Google Scholar 

  56. Western Regional Climate Center (2017) http://www.wrcc.dri.edu/climatedata/climsum/. Accessed 17 Jan 2017

  57. Williams NM, Minckley RL, Silveira FA (2001) Variation in native bee faunas and its implications for detecting community changes. Conserv Ecol 5:7

    Article  Google Scholar 

  58. Winfree R, Aguilar R, Vazquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076. doi:10.1890/08-1245.1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the U.S. Fish and Wildlife Service (Grant F16AP00680) to ZP and VT and by National Science Foundation Graduate Research Fellowship Grant No. DGE-1147384 to ZP. Jena Lewinsohn, U.S. Fish and Wildlife Service, West Valley City UT, was instrumental in getting the project funded; it couldn’t have been done without her support. Elaine York, The Nature Conservancy, encouraged us to work at SK and granted permission to do so. As usual, Bob Douglas, Bureau of Land Management, St. George UT was helpful with logistics and unpublished information. We thank Skyler Burrows for help in the field and with identifications, Brian Rozick for creating occurrence maps, Harold “H” Ikerd for querying the USDA ARS PIRU database with his usual alacrity, James Pitts (Utah State Univ.) for identifying the thomisid, and Terry Griswold (PIRU) for lab facilities and specimen retention. Dr. Tripodi contributed to this article in her personal capacity. The views expressed are her own and do not necessarily represent the views of the Agricultural Research Service or the United States Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zachary M. Portman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 414 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Portman, Z.M., Tepedino, V.J., Tripodi, A.D. et al. Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees. Biol Invasions 20, 593–606 (2018). https://doi.org/10.1007/s10530-017-1559-1

Download citation

Keywords

  • Endangered mutualism
  • Oligolectic bee
  • Endemic poppy
  • Arctomecon
  • Perdita