Skip to main content

Advertisement

Log in

Ecology of forest insect invasions

  • Forest Invasion
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Forests in virtually all regions of the world are being affected by invasions of non-native insects. We conducted an in-depth review of the traits of successful invasive forest insects and the ecological processes involved in insect invasions across the universal invasion phases (transport and arrival, establishment, spread and impacts). Most forest insect invasions are accidental consequences of international trade. The dominant invasion ‘pathways’ are live plant imports, shipment of solid wood packaging material, “hitchhiking” on inanimate objects, and intentional introductions of biological control agents. Invading insects exhibit a variety of life histories and include herbivores, detritivores, predators and parasitoids. Herbivores are considered the most damaging and include wood-borers, sap-feeders, foliage-feeders and seed eaters. Most non-native herbivorous forest insects apparently cause little noticeable damage but some species have profoundly altered the composition and ecological functioning of forests. In some cases, non-native herbivorous insects have virtually eliminated their hosts, resulting in major changes in forest composition and ecosystem processes. Invasive predators (e.g., wasps and ants) can have major effects on forest communities. Some parasitoids have caused the decline of native hosts. Key ecological factors during the successive invasion phases are illustrated. Escape from natural enemies explains some of the extreme impacts of forest herbivores but in other cases, severe impacts result from a lack of host defenses due to a lack of evolutionary exposure. Many aspects of forest insect invasions remain poorly understood including indirect impacts via apparent competition and facilitation of other invaders, which are often cryptic and not well studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ (2010) Historical accumulation of non-indigenous forest pests in the continental US. Bioscience 60:886–897

    Article  Google Scholar 

  • Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, Englin J, Frankel SJ, Haight RG, Holmes TP, Liebhold AM, McCullough DG, Von Holle B (2011) Economic impacts of non-native forest insects in the continental United States. PLoS ONE 6:e24587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beggs J (2001) The ecological consequences of social wasps (Vespula spp.) invading an ecosystem that has an abundant carbohydrate resource. Biol Conserv 99:17–28

    Article  Google Scholar 

  • Beggs JR, Brockerhoff EG, Corley JC, Kenis M, Masciocchi M, Muller F, Rome Q, Villemant C (2011) Ecological effects and management of invasive alien Vespidae. Biocontrol 56:505–526

    Article  Google Scholar 

  • Berndt L, Brockerhoff EG, Jactel H, Weiss T, Beaton J (2004) Biology and rearing of Pseudocoremia suavis, an endemic looper (Lepidoptera: Geometridae) with a history of outbreaks on exotic conifers. N Z Entomol 27:73–82

    Article  Google Scholar 

  • Bertheau C, Brockerhoff EG, Roux-Morabito G, Lieutier F, Jactel H (2010) Novel insect-tree associations resulting from accidental and intentional biological ‘invasions’: a meta-analysis of effects on insect fitness. Ecol Lett 13:506–515

    Article  PubMed  Google Scholar 

  • Bjørnstad ON, Robinet C, Liebhold AM (2010) Geographic variation in North American gypsy moth cycles: subharmonics, generalist predators, and spatial coupling. Ecology 91:106–118

    Article  PubMed  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ (2013) The consequence of tree pests and diseases for ecosystem services. Science 342:1235773

    Article  CAS  PubMed  Google Scholar 

  • Brockerhoff EG, Bain J, Kimberley M, Knížek M (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J For Res 36:289–298

    Article  Google Scholar 

  • Brockerhoff EG, Barratt BI, Beggs JR, Fagan LL, Malcolm K, Phillips CB, Vink CJ (2010) Impacts of exotic invertebrates on New Zealand’s indigenous species and ecosystems. N Z J Ecol 34:158–174

    Google Scholar 

  • Brockerhoff EG, Kimberley M, Liebhold AM, Haack RA, Cavey JF (2014) Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools. Ecology 95:594–601

    Article  PubMed  Google Scholar 

  • Brooks RT (2001) Effects of the removal of overstory hemlock from hemlock-dominated forests on eastern redback salamanders. For Ecol Manag 149:197–204

    Article  Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Caley P, Ingram R, De Barro P (2015) Entry of exotic insects into Australia: does border interception count match incursion risk? Biol Invasions 17:1087–1094

    Article  Google Scholar 

  • Cock MJW, Murphy ST, Kairo MTK, Thompson E, Murphy RJ, Francis AW (2016) Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. Biocontrol 61:349–363

    Article  CAS  Google Scholar 

  • Codella SG, Raffa KF (1995) Contributions of female oviposition patterns and larval behavior to group defense in conifer sawflies (Hymenoptera: Diprionidae). Oecologia 103:24–33

    Article  PubMed  Google Scholar 

  • Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733

    Article  Google Scholar 

  • Donovan BJ (1980) Interactions between native and introduced bees in New Zealand. N Z J Ecol 3:104–116

    Google Scholar 

  • Elkinton JS, Parry D, Boettner GH (2006) Implicating an introduced generalist parasitoid in the invasive browntail moth’s enigmatic demise. Ecology 87:2664–2672

    Article  PubMed  Google Scholar 

  • Elton C (1958) The ecology of invasions by animals and plants. Methuen, London

    Book  Google Scholar 

  • Embree DG (1965) The population dynamics of the winter moth in Nova Scotia, 1954–1962. Mem Entomol Soc Can 97(S46):5–57

    Article  Google Scholar 

  • Epanchin-Niell RS, Liebhold AM (2015) Benefits of invasion prevention: effect of time lags, spread rates, and damage persistence. Ecol Econ 116:146–153

    Article  Google Scholar 

  • Eschen R, Roques A, Santini A (2015a) Taxonomic dissimilarity in patterns of interception and establishment of alien arthropods, nematodes and pathogens affecting woody plants in Europe. Divers Distrib 21:36–45

    Article  Google Scholar 

  • Eschen R, Britton K, Brockerhoff E et al (2015b) International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ Sci Policy 51:228–237

    Article  Google Scholar 

  • Eschtruth AK, Cleavitt NL, Battles JJ, Evans RA, Fahey TJ (2006) Vegetation dynamics in declining eastern hemlock stands: 9 years of forest response to hemlock woolly adelgid infestation. Can J For Res 36:1435–1450

    Article  Google Scholar 

  • Forister ML, Novotny V, Panorska AK et al (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci USA 112:442–447

    Article  CAS  PubMed  Google Scholar 

  • Gandhi KJ, Herms DA (2010a) Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol Invasions 12:389–405

    Article  Google Scholar 

  • Gandhi KJ, Herms DA (2010b) North American arthropods at risk due to widespread Fraxinus mortality caused by the alien emerald ash borer. Biol Invasions 12:1839–1846

    Article  Google Scholar 

  • Gilbert M, Grégoire JC, Freise JF, Heitland W (2004) Long-distance dispersal and human population density allow the prediction of invasive patterns in the horse chestnut leafminer Cameraria ohridella. J Appl Anim Ecol 73:459–468

    Article  Google Scholar 

  • Gilbert GS, Magarey R, Suiter K, Webb CO (2012) Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol Appl 5:869–878

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillespie RG, Reimer N (1993) The effect of alien predatory ants (Hymenoptera: Formicidae) on Hawaiian endemic spiders (Araneae: Tetragnathidae). Pac Sci 47:21–33

    Google Scholar 

  • Gohli J, Selvarajah T, Kirkendall LR, Jordal BH (2016) Globally distributed Xyleborus species reveal recurrent intercontinental dispersal in a landscape of ancient worldwide distributions. BMC Evol Biol 16:37. doi:10.1186/s12862-016-0610-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodsman DW, Koch D, Whitehouse C, Evenden ML, Cooke BJ, Lewis MA (2016) Aggregation and a strong Allee effect in a cooperative outbreak insect. Ecol Appl 26:2621–2634

    Article  CAS  PubMed  Google Scholar 

  • Gravel D, Massol F, Canard E, Mouillot D, Mouquet N (2011) Trophic theory of island biogeography. Ecol Lett 14:1010–1016

    Article  PubMed  Google Scholar 

  • Gray DR (2010) Hitchhikers on trade routes: a phenology model estimates the probabilities of gypsy moth introduction and establishment. Ecol Appl 20:2300–2309

    Article  PubMed  Google Scholar 

  • Groombridge B, Jenkins MD (2002) World atlas of biodiversity. UNEP World Conservation Monitoring Centre, University of California Press, Berkeley

    Google Scholar 

  • Guyot V, Castagneyrol B, Vialatte A, Deconchat M, Selvi F, Bussotti F, Jactel H (2015) Tree diversity limits the impact of an invasive forest pest. PLoS ONE 10:e0136469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haack RA (2006) Exotic bark-and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can J For Res 36:269–288

    Article  Google Scholar 

  • Haack RA, Hérard F, Sun J, Turgeon JJ (2009) Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Annu Rev Entomol 55:521–546

    Article  CAS  Google Scholar 

  • Haack RA, Petrice TR, Wiedenhoeft AC (2010) Incidence of bark-and wood-boring insects in firewood: a survey at Michigan’s Mackinac Bridge. J Econ Entomol 103:1682–1692

    Article  PubMed  Google Scholar 

  • Haack RA, Britton KO, Brockerhoff EG, Cavey JF, Garrett LJ, Kimberley M, Lowenstein F, Nuding A, Olson LJ, Turner J, Vasilaky KN (2014) Effectiveness of the international phytosanitary standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLoS ONE 9(5):e96611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hajek AE, Hurley BP, Kenis M, Garnas JR, Bush SJ, Wingfield MJ, van Lenteren JC, Cock MJW (2016) Exotic biological control agents: a solution or contribution to arthropod invasions? Biol Invasions 18:953–969

    Article  Google Scholar 

  • Hanula JL, Mayfield AE, Fraedrich SW, Rabaglia RJ (2008) Biology and host associations of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae), exotic vector of laurel wilt killing redbay trees in the southeastern United States. J Econ Entomol 101:1276–1286

    Article  PubMed  Google Scholar 

  • Havill NP, Montgomery ME (2008) The role of arboreta in studying the evolution of host resistance to the hemlock woolly adelgid. Arnoldia 65:2–9

    Google Scholar 

  • Havill NP, Elkinton J, Andersen JC, Hagen SB, Broadley HJ, Boettner GJ, Caccone A (2017) Asymmetric hybridization between non-native winter moth, Operophtera brumata (Lepidoptera: Geometridae), and native Bruce spanworm, Operophtera bruceata, in the Northeastern United States, assessed with novel microsatellites and SNPs. Bull Entomol Res 107:241–250

    Article  CAS  PubMed  Google Scholar 

  • Herms DA, McCullough DG (2014) Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management. Annu Rev Entomol 59:13–30

    Article  CAS  PubMed  Google Scholar 

  • Hopper KR, Roush RT (1993) Mate finding, dispersal, number released, and the success of biological control introductions. Ecol Entomol 18:321–331

    Article  Google Scholar 

  • Hudgins EJ, Liebhold AM, Leung B (2017) Predicting the spread of all invasive forest pests in the United States. Ecol Lett. doi:10.1111/ele.12741

    PubMed  Google Scholar 

  • Hufbauer RA, Torchin ME (2007) Integrating ecological and evolutionary theory of biological invasions. In: Nentwig W (ed) Biological invasions. Ecological studies 193. Springer, Berlin, pp 79–99

    Chapter  Google Scholar 

  • Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions 18:921–933

    Article  Google Scholar 

  • Jactel H, Menassieu P, Vetillard F, Gaulier A, Samalens JC, Brockerhoff EG (2006) Tree species diversity reduces the invasibility of maritime pine stands by the bast scale, Matsucoccus feytaudi (Homoptera: Margarodidae). Can J For Res 36:314–323

    Article  Google Scholar 

  • Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Syst 21:243–273

    Article  Google Scholar 

  • Jordal BH, Beaver RA, Kirkendall LR (2001) Breaking taboos in the tropics: incest promotes colonization by wood-boring beetles. Glob Ecol Biogeogr 10:345–357

    Article  Google Scholar 

  • Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol Lett 10:977–994

    Article  PubMed  Google Scholar 

  • Kenis M, Auger-Rozenberg M-A, Roques A, Timms L, Péré C, Cock MJW, Settele J, Augustin S, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. Biol Invasions 11:21–45

    Article  Google Scholar 

  • Kenis M, Hurley BP, Hajek AE, Cock MJW (2017a) Classical biological control of insect pests of trees: facts and figures. Biol Invasions. doi:10.1007/s10530-017-1414-4

  • Kenis M, Roques A, Santini A, Liebhold A (2017b) Impact of non-native invertebrates and pathogens on market forest tree resources. In: Vilà M, Hulme PE (eds) Impact of biological invasions on ecosystem services. Springer, Cham, pp 103–117

    Chapter  Google Scholar 

  • Kennedy TA, Naeem S, Howe KM, Knops JM, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638

    Article  CAS  PubMed  Google Scholar 

  • Kiritani K, Yamamura K (2003) Exotic insects and their pathways for invasion. In: Ruiz GM, Carlton JT (eds) Invasive species—vectors and management strategies. Island Press, Washington, pp 44–67

    Google Scholar 

  • Levine JM, D’Antonio CM (2003) Forecasting biological invasions with increasing international trade. Conserv Biol 17:322–326

    Article  Google Scholar 

  • Liebhold AM, Griffin RL (2016) The legacy of Charles Marlatt and efforts to limit plant pest invasions. Am Entomol 62:218–227

    Article  Google Scholar 

  • Liebhold AM, Tobin PC (2006) Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Popul Ecol 48:253–262

    Article  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408

    Article  CAS  PubMed  Google Scholar 

  • Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ 10:135–143

    Article  Google Scholar 

  • Liebhold AM, McCullough DG, Blackburn LM, Frankel SJ, Von Holle B, Aukema JE (2013) A highly aggregated geographical distribution of forest pest invasions in the USA. Divers Distrib 19:1208–1216

    Article  Google Scholar 

  • Liebhold AM, Yamanaka T, Roques A, Augustin S, Chown SL, Brockerhoff EG, Pyšek P (2016) Global compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biol Invasions 18:893–905

    Article  Google Scholar 

  • Liebhold AM, Brockerhoff EG, Kimberley M (2017a) Depletion of heterogeneous source species pools predicts future invasion rates. J Appl Ecol. doi:10.1111/1365-2664.12895

    Google Scholar 

  • Liebhold AM, Brockerhoff EG, Kalisz S, Nuñez MA, Wardle DA, Wingfield MJ (2017b) Biological invasions in forest ecosystems. Biol Invasions. doi:10.1007/s10530-017-1458-5

  • Lindroth CH (1957) Faunal connections between Europe and North America. Wiley, New York

    Book  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  • Lovett GM, Canham CD, Arthur MA, Weathers KC, Fitzhugh RD (2006) Forest ecosystem responses to exotic pests and pathogens in eastern North America. Bioscience 56:395–405

    Article  Google Scholar 

  • Lozon JD, MacIsaac HJ (1997) Biological invasions: are they dependent on disturbance? Environ Rev 5:131–144

    Article  Google Scholar 

  • Macfarlane RP, Maddison PA, Andrew IG et al (2010) Phylum Arthropoda, subphylum Hexapoda: Protura, springtails, Diplura, and insects. In: Gordon DP (ed) New Zealand inventory of biodiversity, vol 2, Kingdom Animalia. Canterbury University Press, Christchurch, pp 233–467

  • Martin NA, Paynter Q (2014) Predicting risk from adventive herbivores to New Zealand indigenous plants. N Z Entomol 37:21–28

    Article  Google Scholar 

  • Mattson W, Vanhanen H, Veteli T, Sivonen S, Niemelä P (2007) Few immigrant phytophagous insects on woody plants in Europe: legacy of the European crucible? Biol Invasions 9:957–974

    Article  Google Scholar 

  • McCullough DG, Work TT, Cavey JF, Liebhold AM, Marshall D (2006) Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period. Biol Invasions 8:611–630

    Article  Google Scholar 

  • Mondor EB, Tremblay MN, Messing RH (2007) Morphological and ecological traits promoting aphid colonization of the Hawaiian Islands. Biol Invasions 9:87–100

    Article  Google Scholar 

  • Morin RS, Liebhold AM (2015) Invasions by two non-native insects alter regional forest species composition and successional trajectories. For Ecol Manag 341:67–74

    Article  Google Scholar 

  • Morin RS, Liebhold AM (2016) Invasive forest defoliator contributes to the impending downward trend of oak dominance in eastern North America. Forestry 89:284–289

    Article  Google Scholar 

  • Morin RS, Liebhold AM, Gottschalk KW (2009) Anisotropic spread of hemlock woolly adelgid in the eastern United States. Biol Invasions 11:2341–2350

    Article  Google Scholar 

  • Morin RS, Liebhold AM, Pugh SA, Crocker SJ (2017) Regional assessment of emerald ash borer, Agrilus planipennis, impacts in forests of the Eastern United States. Biol Invasions 19:703–711

    Article  Google Scholar 

  • Morris RJ, Lewis OT, Godfray HCJ (2004) Experimental evidence for apparent competition in a tropical forest food web. Nature 428:310–313

    Article  CAS  PubMed  Google Scholar 

  • Munro VMW, Henderson IM (2002) Nontarget effect of entomophagous biocontrol: shared parasitism between native lepidopteran parasitoids and the biocontrol agent Trigonospila brevifacies (Diptera: Tachinidae) in forest habitats. Environ Entomol 31:388–396

    Article  Google Scholar 

  • Niemelä P, Mattson WJ (1996) Invasion of North American forests by European phytophagous insects. Bioscience 46:741–753

    Article  Google Scholar 

  • Nunez-Mir GC, Liebhold AM, Guo Q, Brockerhoff EG, Jo I, Ordonez K, Fei S (2017) Biotic resistance in forest ecosystems: facts, artifacts, and moving forward. Biol Invasions (this issue)

  • O’Dowd DJ, Green PT, Lake PS (2003) Invasion ‘meltdown’ on an oceanic island. Ecol Lett 6:812–817

    Article  Google Scholar 

  • Palamara GM, Carrara F, Smith MJ, Petchey OL (2016) The effects of demographic stochasticity and parameter uncertainty on predicting the establishment of introduced species. Ecol Evol 6:8440–8451

    Article  PubMed  PubMed Central  Google Scholar 

  • Pawson SM, Brockerhoff EG, Meenken ED, Didham RK (2008) Non-native plantation forests as alternative habitat for native forest beetles in a heavily modified landscape. Biodivers Conserv 17:1127–1148

    Article  Google Scholar 

  • Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Natl Acad Sci USA 106:18097–18102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Péré C, Augustin S, Tomov R, Peng LH, Turlings TC, Kenis M (2010) Species richness and abundance of native leaf miners are affected by the presence of the invasive horse-chestnut leaf miner. Biol Invasions 12:1011–1021

    Article  Google Scholar 

  • Péré C, Bell R, Turlings TC, Kenis M (2011) Does the invasive horse-chestnut leaf mining moth, Cameraria ohridella, affect the native beech leaf mining weevil, Orchestes fagi, through apparent competition? Biodivers Conserv 20:3003–3016

    Article  Google Scholar 

  • Ploetz RC, Hulcr J, Wingfield MJ, de Beer ZW (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Dis 97:856–872

    Article  Google Scholar 

  • Price PW, Denno RF, Eubanks MD, Finke DL, Kaplan I (2011) Insect ecology: behavior, populations and communities. Cambridge University Press, New York

    Book  Google Scholar 

  • Raffa KF, Berryman AA (1983) The role of host plant resistance in the colonization behavior and ecology of bark beetles. Ecol Monogr 53:27–49

    Article  Google Scholar 

  • Redman AM, Scriber JM (2000) Competition between the gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis: interactions mediated by host plant chemistry, pathogens and parasitoids. Oecologia 125:218–228

    Article  PubMed  Google Scholar 

  • Reed SE, Muzika RM (2010) The influence of forest stand and site characteristics on the composition of exotic dominated ambrosia beetle communities (Coleoptera: Curculionidae: Scolytinae). Environ Entomol 39:1482–1491

    Article  PubMed  Google Scholar 

  • Richardson DM, Allsopp N, d’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93

    Article  CAS  PubMed  Google Scholar 

  • Robinet C, Liebhold AM (2009) Dispersal polymorphism in an invasive forest pest affects its ability to establish. Ecol Appl 19:1935–1943

    Article  PubMed  Google Scholar 

  • Roques A (2010) Alien forest insects in a warmer world and a globalised economy: impacts of changes in trade, tourism and climate on forest biosecurity. N Z J For Sci 40:S77–S94

    Google Scholar 

  • Roques A, Rabitsch W, Rasplus JY, Lopez-Vaamonde C, Nentwig W, Kenis M (2009) Alien terrestrial invertebrates of Europe. In: Nentwig W (ed) Handbook of alien species in Europe. Springer, Dordrecht, pp 63–79

    Chapter  Google Scholar 

  • Roques A, Auger-Rozenberg M-A, Blackburn TM, Garnas JR, Pyšek P, Rabitsch W, Richardson DM, Wingfield MJ, Liebhold AM, Duncan RP (2016) Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol Invasions 18:907–920

    Article  Google Scholar 

  • Siegert NW, McCullough DG, Liebhold AM, Telewski FW (2014) Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in North America. Divers Distrib 20:847–858

    Article  Google Scholar 

  • Simberloff D, Gibbons L (2004) Now you see them, now you don’t!—population crashes of established introduced species. Biol Invasions 6:161–172

    Article  Google Scholar 

  • Small MJ, Small CJ, Dreyer GD (2005) Changes in a hemlock-dominated forest following woolly adelgid infestation in southern New England. J Torrey Bot Soc 132:458–470

    Article  Google Scholar 

  • South AB, Kenward RE (2001) Mate finding, dispersal distances and population growth in invading species: a spatially explicit model. Oikos 95:53–58

    Article  Google Scholar 

  • Stadler B, Müller T, Orwig D, Cobb R (2005) Hemlock woolly adelgid in New England forests: canopy impacts transforming ecosystem processes and landscapes. Ecosystems 8:233–247

    Article  Google Scholar 

  • Straw NA, Williams DT, Kulinich O, Gninenko YI (2013) Distribution, impact and rate of spread of emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae) in the Moscow region of Russia. Forestry 86:515–522

    Article  Google Scholar 

  • Suckling DM, Barrington AM, Chhagan A, Stephens AEA, Burnip GM, Charles JG, Wee SL (2007) Eradication of the Australian painted apple moth Teia anartoides in New Zealand: trapping, inherited sterility, and male competitiveness. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. Springer, Dordrecht, pp 603–615

    Chapter  Google Scholar 

  • Sun J, Lu M, Gillette NE, Wingfield MJ (2013) Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annu Rev Entomol 58:293–311

    Article  CAS  PubMed  Google Scholar 

  • Théry T, Brockerhoff EG, Carnegie AJ, Favret C et al (2017) EF-1α DNA sequences indicate multiple origins of introduced populations of Essigella californica (Hemiptera, Aphididae). J Econ Entomol 110:1269–1274

    Article  PubMed  Google Scholar 

  • Tobin PC, Whitmire SL, Johnson DM, Bjørnstad ON, Liebhold AM (2007) Invasion speed is affected by geographical variation in the strength of Allee effects. Ecol Lett 10:36–43

    Article  PubMed  Google Scholar 

  • Tobin PC, Robinet C, Johnson DM, Whitmire SL, Bjørnstad ON, Liebhold AM (2009) The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions. Popul Ecol 51:373–384

    Article  Google Scholar 

  • Toy SJ, Newfield MJ (2010) The accidental introduction of invasive animals as hitchhikers through inanimate pathways: a New Zealand perspective. Rev Sci Tech 29:123–133

    Article  CAS  PubMed  Google Scholar 

  • US Department of Commerce (1975) Historical statistics of the United States, Colonial Times to 1970. U.S. Department of Commerce, Washington

    Google Scholar 

  • US Census Bureau (2015) Foreign trade statistics. https://www.census.gov/foreign-trade/index.html. Accessed 1 Dec 2016

  • van Epenhuijsen KC, Henderson RC, Carpenter A, Burge GK (2000) The rise and fall of manuka blight scale: a review of the distribution of Eriococcus orariensis (Hemiptera: Eriococcidae) in New Zealand. N Z Entomol 23:67–70

    Article  Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    Article  PubMed  Google Scholar 

  • Webber JF (2000) Insect vector behavior and the evolution of Dutch elm disease. In: Dunn CP (ed) The elms: breeding, conservation, and disease management. Kluwer Academic Publishers, Boston, pp 47–60

    Chapter  Google Scholar 

  • Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666

    Article  Google Scholar 

  • Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349:832–836

    Article  CAS  PubMed  Google Scholar 

  • Wingfield MJ, Barnes I, de Beer ZW, Roux J, Wingfield BD, Taerum SJ (2017) Novel associations between ophiostomatoid fungi, insects and tree hosts: current status—future prospects. Biol Invasions. doi:10.1007/s10530-017-1468-3

    Google Scholar 

  • Withers TM (2001) Colonization of eucalypts in New Zealand by Australian insects. Austral Ecol 26:467–476

    Article  Google Scholar 

  • Yamanaka T, Morimoto N, Nishida GM, Kiritani K, Moriya S, Liebhold AM (2015) Comparison of insect invasions in North America, Japan and their Islands. Biol Invasions 17:3049–3061

    Article  Google Scholar 

Download references

Acknowledgements

This paper was spawned by the ‘Task Force on Forests and Biological Invasions’ of the International Union of Forest Research Organizations (IUFRO). The authors acknowledge the support of a USDA NIFA AFRI award (2016-67013-24820) and New Zealand MBIE core funding (C04X1104) to Scion and the ‘Better Border Biosecurity’ collaboration (www.b3nz.org). We thank John Bain, Lindsay Bulman, Marc Kenis, Mark Kimberley, and Darren Ward for information and advice, and three anonymous reviewers for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Brockerhoff.

Additional information

Guest Editors: Andrew Liebhold, Eckehard Brockerhoff and Martin Nuñez / Special issue on Biological Invasions in Forests prepared by a task force of the International Union of Forest Research Organizations (IUFRO).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brockerhoff, E.G., Liebhold, A.M. Ecology of forest insect invasions. Biol Invasions 19, 3141–3159 (2017). https://doi.org/10.1007/s10530-017-1514-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1514-1

Keywords

Navigation