Invasive herb Impatiens glandulifera has minimal impact on multiple components of temperate forest ecosystem function

Abstract

Forests understories in Europe are known to generally resist invasion, though some alien plants do invade woodland communities. Here we focused on the impact of the widespread invasive annual Impatiens glandulifera, common along watercourses, but recently spreading in forests up to timberline. We investigated its impact on plant–soil feedback and ecosystem functioning. We recorded >40 variables focusing on: soil characteristics, including micro- and macro-nutrients; characteristics of litter layer and enzyme activity in litter; and richness and species composition of the forest understory. Three treatments were followed for 3 years: plots invaded by I. glandulifera; adjacent invader removal plots within the invaded area; and spatially separated uninvaded plots outside the invaded area. The effect of year-to-year variation was generally greater than that of the treatments, especially in soil and litter characteristics. Copper and boron were higher in invaded than invader removal and uninvaded plots, though in quantities that are unlikely to harm other plants. We found no effect of I. glandulifera on litter characteristics or enzyme activity. Despite almost 80% cover of I. glandulifera, we did not detect any difference in species richness and total vegetation cover between invaded and uninvaded plots. The floristic composition differed among the uninvaded, invader removal and invaded plots across 3 years. Our results indicate that the effect of I. glandulifera on the forest community studied was minor, and largely resulted from its increased shading to other plant species. In conclusion, we show how misleading the evaluation of impacts can be if based on a single season.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adamowski W (2008) Balsams on the offensive: the role of planting in the invasion of Impatiens species. In: Tokarska-Guzik B, Brock JH, Brundu G, Child L, Daehler CC, Pyšek P (eds) Plant invasions: human perception, ecological impacts and management. Backhuys Publishers, Leiden, pp 57–70

    Google Scholar 

  2. Ammer C, Schall P, Wördehoff R, Lamatsch K, Bachmann M (2011) Does tree seedling growth and survival require weeding of Himalayan balsam (Impatiens glandulifera)? Eur J Forest Res 130:107–116

    Article  Google Scholar 

  3. Andrews M, Maule HG, Raven JA, Mistry A (2005) Extension growth of Impatiens glandulifera at low irradiance: importance of nitrate and potassium accumulation. Ann Bot 95:641–648

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Andrews M, Maule HG, Hodge S, Cherrill A, Raven JA (2009) Seed dormancy, nitrogen nutrition and shade acclimation of Impatiens glandulifera: implications for successful invasion of deciduous woodland. Plant Ecol Divers 2:145–153

    Article  Google Scholar 

  5. Baldwin DS, Mitchell AM (2000) The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: a synthesis. River Res Appl 16:457–467

    Article  Google Scholar 

  6. Barney JN, Tekiela DR, Barrios-Garcia MN, Dimarco RD, Hufbauer RA, Leipzig-Scott P et al (2015) Global Invader Impact Network (GIIN): toward standardized evaluation of the ecological impacts of invasive plants. Ecol Evol 5:2878–2889

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  8. Beerling DJ, Perrins DM (1993) Biological flora of British Isles: Impatiens glandulifera Royle (Impatiens Roylei Walp.). J Ecol 81:367–381

    Article  Google Scholar 

  9. CABI (2016) Impatiens glandulifera. http://www.cabi.org/isc/datasheet/28766. Accessed 19 Oct 2016

  10. Chittka L, Schürkens S (2001) Successful invasion of a floral market. Nature 411:653

    CAS  Article  PubMed  Google Scholar 

  11. Crawley JM (2013) The R book, 2nd edn. Wiley, Chichester

    Google Scholar 

  12. Čuda J, Skálová H, Janovský Z, Pyšek P (2014) Habitat requirements, short-term population dynamics and coexistence of native and invasive Impatiens species: a field study. Biol Invasions 16:177–190

    Article  Google Scholar 

  13. Čuda J, Skálová H, Janovský Z, Pyšek P (2015) Competition among native and invasive Impatiens species: the roles of environmental factors, population density and life stage. AoB Plants 7:plv033

    Article  PubMed  PubMed Central  Google Scholar 

  14. Čuda J, Rumlerová Z, Brůna J, Skálová H, Pyšek P (2017) Floods affect the abundance of invasive Impatiens glandulifera and its spreadfrom river corridors? Divers Distrib 23:342–354

    Article  Google Scholar 

  15. Czech Geological Survey (2016) Digital soil map at a scale of 1:50000. http://mapy.geology.cz/pudy. Accessed 19 Oct 2016

  16. DAISIE European Invasive Alien Species Gateway (2006) Impatiens glandulifera. http://www.europe-aliens.org/speciesFactsheet.do?speciesId=17367. Accessed 19 Oct 2016

  17. Dassonville N, Vanderhoeven S, Vanparys V, Hayez M, Gruber W, Meerts P (2008) Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 157:131–140

    Article  PubMed  Google Scholar 

  18. Davis MA, Bier L, Bushelle E, Diegel Chloe, Johnson Aleta, Kujala Brianna (2005) Non-indigenous grasses impede woody succession. Plant Ecol 178:249–264

    Article  Google Scholar 

  19. Diekmann M, Effertz H, Baranowski M, Dupré C (2016) Weak effects on plant diversity of two invasive Impatiens species. Plant Ecol. doi:10.1007/s11258-016-0663-0

    Google Scholar 

  20. Essl F, Rabitsch W (eds) (2002) Neobiota in Österreich. Umweltbundesamt GmbH, Wien

    Google Scholar 

  21. Frazer GW, Canham CD, Lertzman KP (1999) Gap light analyzer (GLA): users manual and program documentation. Simon Frazer University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York

  22. Gederaas L, Moen TL, Skjelseth S, Larsen LK (2012) Alien species in Norway—with the Norwegian Black List 2012. The Norwegian Biodiversity Infomation Centre, Norway

    Google Scholar 

  23. Greenwood P, Kuhn N (2014) Does the invasive plant, Impatiens glandulifera, promote soil erosion along the riparian zone? An investigation on a small watercourse in northwest Switzerland. J Soils Sediments 14:637–650

    Article  Google Scholar 

  24. Grime J, Hodgson J, Hunt R (2007) Comparative plant ecology: a functional approach to common British species. Castlepoint Press, Colvend

    Google Scholar 

  25. Guevara-Escobar A, Tellez J, Gondalez-Sosa E (2005) Use of digital photography for analysis of canopy closure. Agrofor Syst 65:175–185

    Article  Google Scholar 

  26. Hedge P, Kriwoken LK (2000) Evidence for effects of Spartina anglica invasion on benthic macrofauna in Little Swanport estuary, Tasmania. Austral Ecol 25:150–159

    Article  Google Scholar 

  27. Hejda M, Pyšek P (2006) What is the impact of Impatiens glandulifera on species diversity of invaded riparian vegetation? Biol Conserv 132:143–152

    Article  Google Scholar 

  28. Hejda M, Pyšek P, Jarošík V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403

    Article  Google Scholar 

  29. Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22

    Article  Google Scholar 

  30. Hillel D (1998) Environmental soil physics: fundamentals, applications, and environmental considerations. Academic Press, San Diego

    Google Scholar 

  31. Hulme PE, Bremner ET (2005) Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal. J Appl Ecol 43:43–45

    Article  Google Scholar 

  32. Hulme PE, Pyšek P, Jarošík V, Pergl J, Schaffner U, Vilà M (2013) Bias and error in understanding plant invasion impacts. Trends Ecol Evol 28:212–218

    Article  PubMed  Google Scholar 

  33. Jackson ML (1958) Soil chemical analysis. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  34. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 689:373–386

    Article  Google Scholar 

  35. Klute A (1986) Methods of soil analysis Part 1 Physical and mineralogical methods. Americal Society of Agronomy, Madison, WI

    Google Scholar 

  36. Knapp PA (1996) Cheatgrass (Bromus tectorum L) dominance in the great basin desert. History, persistence, and influences to human activities. Glob Environ Change 6:37–52

    Article  Google Scholar 

  37. Kourtev PS, Ehrenfeld JG, Huang WZ (2002) Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biol Biochem 34 (9):1207–1218

    CAS  Article  Google Scholar 

  38. Kumschick S, Gaertner M, Vilà M, Essl F, Jeschke JM, Pyšek P, Bacher S, Blackburn TM, Dick JTA, Evans T, Hulme PE, Kühn I, Mrugała A, Pergl J, Rabitsch W, Ricciardi A, Richardson DM, Sendek A, Winter M (2015) Ecological impacts of alien species: quantification, scope, caveats and recommendations. Bioscience 65:55–63

    Article  Google Scholar 

  39. Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M, Essl F, Jarošík V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, Brundu G, Celesti-Grapow L, Chassot P, Delipetrou P, Josefsson M, Kark S, Klotz S, Kokkoris Y, Kühn I, Marchante H, Perglová I, Pino J, Vilà M, Zikos A, Roy D, Hulme PE (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  40. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33

    Article  Google Scholar 

  41. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New York

    Google Scholar 

  42. Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    CAS  Article  PubMed  Google Scholar 

  43. Maguire RO, Heckendorn S (2011) Laboratory procedures: Virginia Tech soil testing laboratory. Virginia Tech, Blacksburg

    Google Scholar 

  44. Malíková L, Prach K (2010) Spread of alien Impatiens glandulifera along rivers invaded at different times. Ecohydrol Hydrobiol 10:81–85

    Article  Google Scholar 

  45. Marschner P (ed) (2011) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  46. Moore PD, Chapman SB (1986) Methods in plant ecology. Blackwell Scientific, Oxford

    Google Scholar 

  47. Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    CAS  Article  Google Scholar 

  48. Nobis M (2008) Invasive Neophyten auch im Wald? Wald Holz 8:46–49

    Google Scholar 

  49. Nobis M, Hunziker U (2005) Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agric For Meteorol 128:243–250

    Article  Google Scholar 

  50. Ogle SM, Reiners WA, Gerow KG (2003) Impacts of exotic annual brome grasses (Bromus spp.) on ecosystem properties of northern mixed grass prairie. Am Midl Nat 149:46–58

    Article  Google Scholar 

  51. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) vegan: community ecology package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan

  52. Olsen RS (1982) Phosphorus. In: Page AL (ed) Methods in soil analysis, part 2, chemical and microbiological properties. Americal Society of Agronomy, Madison, pp 403–430

    Google Scholar 

  53. Osono T, Takeda H (2005) Limit values for decomposition and convergence process of lignocellulose fraction in decomposing leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20:51–58

    CAS  Article  Google Scholar 

  54. Pattison Z, Rumble H, Tanner RA, Jin L, Gange AC (2016) Positive plant–soil feedbacks of the invasive Impatiens glandulifera and their effects on above-ground microbial communities. Weed Res 56:198–207

    CAS  Article  Google Scholar 

  55. Pergl J, Sádlo J, Petrusek A, Laštůvka Z, Musil J, Perglová I, Šanda R, Šefrová H, Šíma J, Vohralík V, Pyšek P (2016) Black, grey and watch lists of alien species in the Czech Republic based on environmental impacts and management strategy. NeoBiota 28:1–37. doi:10.3897/neobiota.28.4824

    Article  Google Scholar 

  56. Pyšek P, Prach K (1995) Invasion dynamics of Impatiens glandulifera—a century of spreading reconstructed. Biol Conserv 74:41–48

    Article  Google Scholar 

  57. Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012a) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737

    Article  Google Scholar 

  58. Pyšek P, Danihelka J, Sádlo J, Chrtek J Jr, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L (2012b) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255

    Google Scholar 

  59. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  60. Ruckli R, Rusterholz HP, Baur B (2013) Invasion of Impatiens glandulifera affects terrestrial gastropods by altering microclimate. Acta Oecol 47:16–23

    Article  Google Scholar 

  61. Ruckli R, Rusterholz HP, Baur B (2014) Invasion of an annual exotic plant into deciduous forests suppresses arbuscular mycorrhiza symbiosis and reduces performance of sycamore maple saplings. For Ecol Manag 318:285–293

    Article  Google Scholar 

  62. Rumlerová Z, Vilà M, Pergl J, Nentwig W, Pyšek P (2016) Scoring environmental and socioeconomic impacts of alien plants invasive in Europe. Biol Invasions. doi:10.1007/s10530-016-1259-2

    Google Scholar 

  63. Rusterholz HP, Salamon JA, Ruckli R, Baur B (2014) Effects of the annual invasive plant Impatiens glandulifera on the Collembola and Acari communities in a deciduous forest. Pedobiologia 57:285–291

    Article  Google Scholar 

  64. Scherber C, Eisenhauer N, Weisser WW et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556

    CAS  Article  PubMed  Google Scholar 

  65. Skálová H, Jarošík V, Dvořáčková S, Pyšek P (2013) Effect of intra- and interspecific competition on the performance of native and invasive species of Impatiens under varying levels of shade and moisture. PLoS ONE 8:e62842

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stehouwer R, Roth G (2004) Copper sulfate hoof baths and copper toxicity in soil. Penn State Field Crop News Publ. 4:1. http://extension.psu.edu/plants/crops/news/2004/april-2#copper. Accessed 19 Oct 2016

  67. Tanner RA, Gange AC (2013) The impact of two non-native plant species on native flora performance: potential implications for habitat restoration. Plant Ecol 214:423–432

    Article  Google Scholar 

  68. Tanner RA, Varia S, Eschen R, Wood S, Murphy ST, Gange AC (2013) Impacts of an invasive non-native annual weed, Impatiens glandulifera, on above-and below-ground invertebrate communities in the United Kingdom. PLoS ONE 8:e67271

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Ter Braak CJF, Šmilauer P (2012) CANOCO reference manual and user’s guide: software for ordination (version 5.0). Biometris, Ithaca

    Google Scholar 

  70. Tolasz R (ed) (2007) Atlas of climate of the Czech Republic. Český hydrometeorologický ústav, Praha (in Czech)

    Google Scholar 

  71. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  72. Vinogradova YK, Maiorov SR, Khorun LV (2010) Black book of the flora of Central Russia: alien plant species in Central Russian ecosystems. GEOS, Moscow

    Google Scholar 

  73. Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804

    CAS  Article  PubMed  Google Scholar 

  74. Vrchotová N, Šerá B, Krejčová J (2011) Allelopathic activity of extracts from Impatiens species. Plant Soil Environ 57:57–60

    Google Scholar 

  75. Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J Chem Ecol 36:59–69

    CAS  Article  PubMed  Google Scholar 

  76. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Google Scholar 

  77. Wickham H, Francois R (2016) dplyr: a grammar of data manipulation. R package version 0.5.0. https://CRAN.R-project.org/package=dplyr

Download references

Acknowledgements

We would like to thank Zuzana Rumlerová, Matěj Man and Lukáš Vítek for their help in the field. This study was supported by the Praemium Academiae award to Petr Pyšek, project no. 14-36079G (Centre of Excellence PLADIAS) from the Czech Science Foundation, and long-term research development project no. RVO 67985939 from The Czech Academy of Sciences. JNB was partially supported by Virginia Tech College of Agriculture and Life Sciences. We thank Martin Hejda, Jan Pergl and Tomáš Herben for advice on the statistical analyses and to Zuzana Sixtová for technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Čuda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 532 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Čuda, J., Vítková, M., Albrechtová, M. et al. Invasive herb Impatiens glandulifera has minimal impact on multiple components of temperate forest ecosystem function. Biol Invasions 19, 3051–3066 (2017). https://doi.org/10.1007/s10530-017-1508-z

Download citation

Keywords

  • Field study
  • Global Invader Impact Network
  • Himalayan balsam
  • Litter
  • Plant–soil interaction
  • Plant invasions
  • Removal
  • Species richness
  • Soil analysis