Skip to main content
Log in

Invasive Tamarix (Tamaricaceae) in South Africa: current research and the potential for biological control

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Most species of Tamarix originate in Eurasia and at least five species have become invasive around the world, including South Africa. However, T. usneoides is indigenous to southern Africa, where the potential for biological control of the invasive species is being investigated. Recent research on the invasive species is reviewed here with particular reference to these South African biocontrol efforts. The successful biological control programme against invasive Tamarix in the USA, using several species of “Tamarisk beetle”, is being used as a guide for the South African research. The South African programme is complicated by firstly, the presence of the indigenous T. usneoides which raises the precision of host-specificity required, and secondly, the introduced and indigenous Tamarix have a high intrinsic value for phytoremediation of mine tailings dams in South Africa. The phylogenetic proximity of these Tamarix species to each other has contributed to this challenge, which has nevertheless been successfully addressed by molecular techniques used to separate the species. In addition, classical morphological techniques have been used to separate the Tamarisk beetles, so that now they can generally be matched to Tamarix tree species. Overall, it is concluded that given the broad knowledge now available on the ecology and identity of both the trees and their biocontrol agents, the prospects for successful biological control of Tamarix in South Africa are good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baum BR (1978) The genus Tamarix. Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Bean DW, Dudley TL, Keller JC (2007) Seasonal timing of diapause induction limits the effective range of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) as a biological control agent for tamarisk (Tamarix spp.). Environ Entomol 36(1):15–25

    Article  PubMed  Google Scholar 

  • Bean DW, Dalin P, Dudley TL (2012) Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.). Evol Appl 5:511–523

    Article  PubMed  PubMed Central  Google Scholar 

  • Binggeli P, Hall JB, Healey JR (1998) An overview of invasive woody plants in the tropics. http://www.bangor.ac.uk/~afs101/iwpt/web1-99.pdf. Accessed 8 June 2016

  • Brotherson JD, Field D (1987) Tamarix: impacts of a successful weed. Rangelands 9:110–112

    Google Scholar 

  • Buckham LE (2011) Contrasting growth traits and insect interactions of two Tamarix species and a hybrid (Tamaricaceae) used for mine rehabilitation in South Africa. Dissertation, University of the Witwatersrand

  • CABI (2016) Invasive Species Compendium, Wallingford, UK: CAB International. www.cabi.org/isc. Accessed 31 Aug 2016

  • Chew MK (2009) The monstering of Tamarisk: how scientists made a plant into a problem. J Hist Biol 42:231–266

    Article  PubMed  Google Scholar 

  • Crins WJ (1989) The Tamaricaceae of the southeastern United States. J Arnold Arbor 70:403–425

    Article  Google Scholar 

  • Csurhes S (2008) Pest plant risk assessment: Athel pine Tamarix spp. Department of Primary Industries and Fisheries, Brisbane, Queensland, http://www.daff.qld.gov.au/_data/assets/pdf_file/0011/69833. Accessed 15 Jan 2016

  • Dalin P, Bean DW, Dudley TL, Carney VA, Eberts D, Gardner KT et al (2010) Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.). Environ Entomol 39(5):1666–1675

    Article  PubMed  Google Scholar 

  • Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ, Vermeij GJ, Brown JH, Rosenzweig ML, Gardener MR, Carroll SP et al (2011) Don’t judge species on their orignins. Nature 474:153–154

    Article  CAS  PubMed  Google Scholar 

  • DEA (Department of Environmental Affairs) (2016) National Environmental Management: Biodiversity act of South Africa 2004 (Act No. 10 of 2004): Alien and invasive species list. Department of Environmental Affairs, Pretoria

    Google Scholar 

  • DeLay L, Finch DM, Brantley S, Fagerlund R, Mearns MD, Kelly JF (1999) Arthropods of native and exotic vegetation and their associations with willow flycatchers and Wilson’s warblers. In: Finch DM, Whitney JC, Kelly JK, Loftin SR (eds) Rio Grande ecosystems: linking land, water and people, Proceedings RMRS-P-7, 2–5 June 1998, Albuquerque, U.S. Department of Agriculture–Forest Service, Ogden, pp 216–221

  • DeLoach CJ, Carruthers RI (2004) Biological control programs for integrated invasive plant management. In: Proceedings of the Weed Science Society of America Meeting, Kansas City. Weed Science Society of America (CD-ROM)

  • DeLoach CJ, Gerling D, Fornasari L, Sobhian R, Myartseva S, Mityaev ID et al (1996) Biological control programme against saltcedar (Tamarix spp.) in the United States of America: progress and problems. In: Moran VC, Hoffmann JH (eds) Proceedings of the IX International Symposium on Biological Control of Weeds, 19–26 January 1996, Stellenbosch, South Africa. University of Cape Town, Rondebosch, pp 253–260

    Google Scholar 

  • DeLoach CJ, Carruthers RI, Lovich J, Dudley TL, Smith SD (2000) Ecological interactions in the biological control of saltcedar (Tamarix spp.) in the US: toward a new understanding. In: Spencer NR (ed) Proceedings of the X international symposium on biological control of weeds, 4–14 July 1999, Bozeman, MT. Department of Agriculture, Forest Service, Morgantown, pp 819–874

  • DeLoach CJ, Lewis PA, Herr JC, Carruthers RI, Tracy JL, Johnson J (2003) Host specificity of the leaf beetle, Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) from Asia, a biological control agent for saltcedars (Tamarix: Tamaricaceae) in the Western United States. Biol Control 27:117–147

    Article  Google Scholar 

  • DeLoach CJ, Carruthers RI, Knutson AE, Moran PJ, Ritzi CM, Dudley TL et al (2011) Twenty-five years of biological control of saltcedar (Tamarix: Tamaricaceae) in the Western USA: Emphasis Texas—1986–2011. In: Wu Y, Johnson T, Sing S, Raghu S, Wheeler G, Pratt P et al (eds) Proceedings of the XIII international symposium on biological control of weeds, 11–15 September 2011, Waikoloa, HI. Forest Health Technology Enterprise Team, Morgantown, pp 268–275

    Google Scholar 

  • Di Tomaso JM (1998) Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technol 12:326–336

    Google Scholar 

  • Dickie IA, Bennett BM, Burrows LE, Nuñez MA, Peltzer DA, Porté A, Richardson DM, Rejmánek M, Rundel PW, van Wilgen BW (2014) Conflicting values: ecosystem services and invasive tree management. Biol Invasions 16:705–719

    Article  Google Scholar 

  • Dudley T (2005) Saltcedar biocontrol: a success story in the making. Biocontrol News Inf 26:41N–44N

    Google Scholar 

  • Dudley TL, Dalin P, Bean DW (2006) Status of biological control of Tamarix spp. in California. In: Hoddle MS, Johnson MW (eds) Proceedings of the 5th California conference on biological control, 25–27 July 2006, Riverside, CA. University of California Press, Berkeley, pp 137–140

    Google Scholar 

  • Durst SL, Theimer TC, Paxton EH, Sogge MK (2008) Temporal variation in the arthropod community of desert riparian habitats with varying amounts of Saltcedar (Tamarix ramosissima). J Arid Environ 72:1644–1653

    Article  Google Scholar 

  • Dye PJ, Weiersbye IM (2010) The mine woodlands project in the Witwatersrand Basin gold fields of South Africa: strategy and progress. In: Wolkersdorfer C, Freund A (eds) Proceedings of the 8th international mine water association—mine water and innovative thinking, 5–9 Sept 2010, Sydney, Nova Scotia. Cape Brenton University Press, Sydney, pp 471–474

    Google Scholar 

  • Eastman JR (2012) IDRISI (Version 17.02) [Computer software]

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. Biocontrol 46:387–400

    Article  Google Scholar 

  • Ellis LM, Crawford CS, Molles MC (1997) Rodent communities in native and exotic riparian vegetation in the middle Rio Grande Valley of central New Mexico. Southwest Nat 42:13–19

    Google Scholar 

  • Ellis LM, Molles MC, Crawford CS, Heinzelmann F (2000) Surface-active arthropod communities in native and exotic vegetation in the middle Rio Grande Valley, New Mexico. Southwest Nat 45:456–471

    Article  Google Scholar 

  • ESRI (2015) ArcGIS for Desktop (Version 10.3.1) [Computer software]

  • Floate KD, Whitham TG (1993) The “hybrid bridge” hypothesis: host shifting via plant hybrid swarms. Am Nat 141:651–662

    Article  CAS  PubMed  Google Scholar 

  • Fuller MR (1993) The invasion and control of Tamarix aphylla on the Finke River, central Australia. In: Wilson BJ, Swarbrick JT (eds) Proceedings of the 10th Australian weeds conference and 14th Asian Pacific Weed Science Society Conference, 6–10 Sept 1993. Queensland Weed Society, Brisbane, pp 44–46

    Google Scholar 

  • Gaskin JF, Kazmer DJ (2009) Introgression between invasive saltcedars (Tamarix chinensis and Tamarix ramosissima) in the USA. Biol Invasions 11:1121–1130

    Article  Google Scholar 

  • Gaskin JF, Schaal BA (2003) Molecular phylogenetic investigation of U.S. invasive Tamarix. Syst Bot 28(1):86–95

    Google Scholar 

  • Gaskin JF, Ghahremani-Nejad F, Zhang D-Y, Londo JP (2004) A systematic overview of Frankeniaceae and Tamaricaceae from nuclear rDNA and plastid sequence data. Ann Mo Bot Gard 91:401–409

    Google Scholar 

  • GBIF (2016) Global Biodiversity Information Facility (GBIF). http://www.gbif.org. Accessed 6–30 May 2016

  • Ghazanfar S (2008) Caryophyllaceae. In: Figueirode E, Smith GF (eds) Plants of Angola. Strelitzia 22: 162. South African National Biodiversity Institute, Pretoria

    Google Scholar 

  • Global Invasive Species Database (2016) http://193.206.192.138/gisd/search.php. Accessed 19 June 2016

  • Hagemeyer J, Waisel Y (1998) Excretion of ions (Cd2+, Li+, Na+, and Cl) by Tamarix aphylla. Physiol Plant 73:541–546

    Article  Google Scholar 

  • Harding L (1930) The biology of Opsius stactogalus Fieber (Homoptera: Cicadellidae). J Kans Entomol Soc 3:7–22

    Google Scholar 

  • Henderson L (2001) Alien weeds and invasive plants: a complete guide to declare weeds and invaders in South Africa. Agric Res Comm, Cape Town

    Google Scholar 

  • Herr JC, Herrera-Reddy AM, Carruthers RI (2014) Field testing Diorhabda elongate (Coleoptera: Chrysomelidae) from Crete, Greece, to assess potential impact on nontarget native California plants in the genus Frankenia. Environ Entomol 43(3):642–653

    Article  PubMed  Google Scholar 

  • Herrera AM, Dahlsten DD, Tomic-Carruthers N, Carruthers RI (2005) Estimating temperature-dependent developmental rates of Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent of saltcedar (Tamarix spp.). Environ Entomol 34(4):775–784

    Article  Google Scholar 

  • Heywood VH, Brummitt RK, Culham A, Seberg O (2007) Flowering plant families of the world. Royal Botanic Gardens, Kew

    Google Scholar 

  • Holmes PM, Richardson DM, Esler KJ, Witkowski EFT, Fourie S (2005) A decision-making framework for restoring riparian zones degraded by invasive alien plants in South Africa. S Afr J Sci 101:553–564

    Google Scholar 

  • Hutchinson J, Dalziel JM (1963) Flora of West Tropical Africa, 2nd edn. Crown agents for oversea government and administration, London, p 214

    Google Scholar 

  • Impson FAC, Kleinjan CA, Hoffmann JH, Post JA, Wood AR (2011) Biological control of Australian Acacia species and Paraserianthes lophantha (Willd.) Nielsen (Mimosaceae) in South Africa. Afr Entomol 19(2):186–207

    Article  Google Scholar 

  • Kadukova J, Manousaki E, Kalogerakis N (2008) Pb and Cd accumulation and Phyto-excretion by salt cedar (Tamarix smyrnensis, Bunge). Int J Phytoremediat 10:31–46

    Article  CAS  Google Scholar 

  • Kalwij JM (2012) Review of ‘The Plant List, a working list of all plant species’. J Veg Sci 23:998–1002

    Article  Google Scholar 

  • Kaplan H, Wilson JRU, Klein H, Henderson L, Zimmermann HG, Manyama P, Ivey P, Richardson DM, Novoa A (2017) A proposed national strategic framework for the management of Cactaceae in South Africa. Bothalia 47(2):a2149. doi:10.4102/abc.v47i2.2149

    Article  Google Scholar 

  • Le Maitre D, Forsyth G, Dzikiti S, Gush M (2013) Estimates of the impacts of invasive alien plants on water flows in South Africa. CSIR Natural Resources and the Environment, report number: CSIR/NRE/ECO/ER/2013/0067/B

  • Le Roux J, Wieczorek AM (2008) Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management. Ann Appl Biol 157:1–17

    Google Scholar 

  • Lewis PA, DeLoach CJ, Knutson AE, Tracy JL, Robbins TO (2003a) Biology of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae), an Asian leaf beetle for biological control of saltcedars (Tamarix spp.) in the United States. Biol Control 27:101–116

    Article  Google Scholar 

  • Lewis PA, DeLoach CJ, Herr JC, Dudley TL, Carruthers RI (2003b) Assessment of risk to native Frankenia shrubs from an Asian leaf beetle, Diorhabda elongata deserticola (Coleoptera: Chrysomelidae), introduced for biological control of saltcedars (Tamarix spp.) in the western United States. Biol Control 27:148–166

    Article  Google Scholar 

  • Liesner DR (1940) Phytophagous insects of Tamarix spp. in New Mexico. Dissertation, New Mexico State University

  • Longland WS (2012) Small mammals in saltcedar (Tamarix ramosissima)—invaded and native riparian habitats of the Western Great Basin. Invasive Plant Sci Manag 5(2):230–237

    Article  Google Scholar 

  • Manning JC, Helme NA (2014) Frankenia fruticosa (Frankeniaceae), a new dwarf shrub from the Knersvlakte, Western Cape. S Afr J Bot 91:84–87

    Article  Google Scholar 

  • Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16(7):844–854

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660

    Article  CAS  Google Scholar 

  • Mayonde SG (2013) Genotypic and phylogeographic investigation of indigenous and alien Tamarix species in southern Africa. Dissertation, University of the Witwatersrand

  • Mayonde SG, Cron GV, Gaskin JF, Byrne MJ (2015) Evidence of Tamarix hybrids in South Africa, as inferred by nuclear ITS and plastid trnStrnG DNA sequences. S Afr J Bot 96:122–131

    Article  CAS  Google Scholar 

  • Mayonde SG, Cron GV, Gaskin JF, Byrne MJ (2016) Tamarix (Tamaricaceae) hybrids: the dominant invasive genotype in southern Africa. Biol Invasions 18:3575–3594. doi:10.1007/s10530-016-1249-4

    Article  Google Scholar 

  • McDaniel KC, Taylor JP (2003) Saltcedar recovery after herbicide-burn and mechanical clearing practices. J Range Manag 56:439–445

    Article  Google Scholar 

  • Milbrath LR, DeLoach CJ (2006a) Acceptability and suitability of athel, Tamarix aphylla, to the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent of saltcedar (Tamarix spp.). Environ Entomol 35(5):1379–1389

    Google Scholar 

  • Milbrath LR, DeLoach CJ (2006b) Host specificity of different populations of the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent of saltcedar (Tamarxi spp.). Biol Control 36:32–48

    Article  Google Scholar 

  • Milbrath LR, Deloach CJ, Tracy JL (2007) Overwintering survival, phenology, voltinism, and reproduction among different populations of the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae). Environ Entomol 36(6):1356–1364

    Article  PubMed  Google Scholar 

  • Obermeyer AA (1976a) Frankeniaceae. In: Ross JH (ed) Flora of southern Africa, vol 22. Botanical Research Institute, Pretoria, pp 32–36

    Google Scholar 

  • Obermeyer AA (1976b) Tamaricaceae. In: Ross JH (ed) Flora of southern Africa, vol 22. Botanical Research Institute, Pretoria, pp 36–39

    Google Scholar 

  • Ohrtman MK, Clay SA, Clay DE, Smart AJ (2012) Fire as a tool for controlling Tamarix spp. seedlings. Invasive Plant Sci Manag 5(2):139–147

    Article  Google Scholar 

  • Passioura JB (2010) Plant–Water Relations. In: Encyclopedia of Life Sciences (ELS). Wiley,: Chichester. doi:10.1002/9780470015902.a0001288.pub2

  • Pattison RR, D’Antonio CM, Dudley TL (2011) Biological control reduces growth, and alters water relations of the saltcedar tree (Tamarix spp.) in western Nevada, USA. J Arid Environ 75:346–352

    Article  Google Scholar 

  • Pivetz BE (2001) Ground water issue: Phytoremediation of contaminated soil and ground water at hazardous waste sites. United States Environmental Protection Agency, EPA/540/S-01/500 February

  • Randall RP (2012) A global compendium of weeds, 2nd edn. Department of Agriculture and Food, Western Australia

    Google Scholar 

  • Reeves R, Baker A (2000) Metal accumulating plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Disrtrib 19:1093–1094

    Article  Google Scholar 

  • Richardson DM (2011) Trees and shrubs. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 670–677

    Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Santos ES, Abreu MM, Peres S, Magalhães MCF, Leitão S, Santos Pereira A, Cerejeira MJ (2015) Potential of Tamarix africana and other halophyte species for phytostabilisation of contaminated salt marsh soils. J Soils Sediments. doi:10.1007/s11368-015-1333-x

    Google Scholar 

  • Shackleton RT, Le Maitre DC, van Wilgen BW, Richardson DM (2017) Towards a national strategy to optimise the management of a widespread invasive tree (Prosopis species; mesquite) in South Africa. Ecosyst Serv. doi:10.1016/j.ecoser.2016.11.022 (in press)

    Google Scholar 

  • Sorensen MA, Parker DR, Trumble JT (2009) Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae). Environ Pollut 157:384–391

    Article  CAS  PubMed  Google Scholar 

  • Sounders DS (2002) Insect clocks, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Spear D, McGeoch MA, Foxcroft LC, Bezuidenhout H (2011) Alien species in South Africa’s national parks. Koedoe 53(1), Art. #1032. doi:10.4102/koedoe.v53i1.1032

  • Stromberg JC, Chew MK, Nagler PL, Glenn EP (2009) Changing perceptions of change: the role of scientists in Tamarix and river management. Restor Ecol 17:177–186

    Article  Google Scholar 

  • Survey of Economic Plants of Arid and Semi-Arid Lands (SEPASAL) database (1999) Royal Botanic Gardens, Kew. Published on the Internet http://apps.kew.org/sapasalweb. Accessed 31 Aug 2016

  • Tamarisk Coalition (2015) 2007–2015 Distribution of Tamarisk Beetle. http://tamariskcoalition.org/programs/tamarisk-beetle-maps. Accessed 15 May 2016

  • Tracy JL, Robbins TO (2009) Taxonomic revision and biogeography of the Tamarix-feeding Diorhabda elongata (Brullé, 1832) species group (Coleoptera: Chrysomelidae: Galerucinae: Galerucini) and analysis of their potential in biological control of Tamarisk. Zootaxa 2101. Magnolia Press, Auckland

  • van Wilgen BW, Dyer C, Hoffmann JH, Ivey P, Le Maitre DC, Moore JL, Richardson DM, Rouget M, Wannenburgh A, Wilson JRU (2011) National-scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. Divers Distrib 17:1060–1075

    Article  Google Scholar 

  • Watts JG, Liesner DR, Lindsey DL (1977) Saltcedar: a potential target for biological control. Bulletin No. 650, New Mexico Agricultural Experiment Station

  • Weiersbye I, Witkowski E, Reichardt M (2006) Floristic composition of gold and uranium tailings dams, and adjacent polluted areas, on South Africa’s deep-level mines. Bothalia 36:101–127

    Article  Google Scholar 

  • Willdenow K (1816) Beschreibung der Gattung Tamarix. Abh Akad Berlin Physik 1812–1813:76–85

    Google Scholar 

  • Winston RL, Schwarzländer M, Hinz HL, Day MD, Cock MJW, Julien MH (2014) Biological control of weeds: a world catalogue of agents and their target weeds, 5th edn. Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, Morgantown

    Google Scholar 

Download references

Acknowledgements

We thank one anonymous reviewer and John Wilson for critical review of an earlier version of the article.

Funding

This study was partially funded by the National Research Foundation (Grant 88407) and the University of the Witwatersrand. Funders were not involved in the preparation of the article or the decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

DM and MJB conceptualized the article. ERS produced the maps. All authors contributed to writing and revising the article. All authors approved the final version.

Corresponding author

Correspondence to Danica Marlin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marlin, D., Newete, S.W., Mayonde, S.G. et al. Invasive Tamarix (Tamaricaceae) in South Africa: current research and the potential for biological control. Biol Invasions 19, 2971–2992 (2017). https://doi.org/10.1007/s10530-017-1501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1501-6

Keywords

Navigation