Modelling tropical fire ant (Solenopsis geminata) dynamics and detection to inform an eradication project

Abstract

Invasive species threaten endangered species worldwide and substantial effort is focused on their control. Eradication projects require critical resource allocation decisions, as they affect both the likelihood of success and the overall cost. However, these complex decisions must often be made within data-poor environments. Here we develop a mathematical framework to assist in resource allocation for invasive species control projects and we apply it to the proposed eradication of the tropical fire ant (Solenopsis geminata) from the islands of Ashmore Reef in the Timor Sea. Our framework contains two models: a population model and a detection model. Our stochastic population model is used to predict ant abundance through time and allows us to estimate the probability of eradication. Using abundance predictions from the population model, we use the detection model to predict the probability of ant detection through time. These models inform key decisions throughout the project, which include deciding how many baiting events should take place, deciding whether to invest in detector dogs and setting surveillance effort to confirm eradication following control. We find that using a combination of insect growth regulator and toxins are required to achieve a high probability of eradication over 2 years, and we find that using two detector dogs may be more cost-effective than the use of lure deployment, provided that they are used across the life of the project. Our analysis lays a foundation for making decisions about control and detection throughout the project and provides specific advice about resource allocation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Allen CR, Fontaine JJ, Pope KL, Garmestani AS (2011) Adaptive management for a turbulent future. J Environ Manage 92:1339–1345. doi:10.1016/j.jenvman.2010.11.019

    Article  PubMed  Google Scholar 

  2. Asano E, Cassill DL (2011) Impact of worker longevity and other endogenous factors on colony size in the fire ant, Solenopsis invicta. Insectes Soc 58:551–557. doi:10.1007/s00040-011-0179-5

    Article  Google Scholar 

  3. Baker CM, Bode M (2015) Placing invasive species management in a spatiotemporal context. Ecol Appl. doi:10.1890/15-0095.1

    PubMed  Google Scholar 

  4. Barrett S, Whittle P, Mengersen K, Stoklosa R (2009) Biosecurity threats: the design of surveillance systems, based on power and risk. Environ Ecol Stat 17:503–519. doi:10.1007/s10651-009-0113-4

    Article  Google Scholar 

  5. Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biol Lett 12:20150623. doi:10.1098/rsbl.2015.0623

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bellio MG (2007) A preliminary ecological risk assessment of the impact of tropical fire ants (Solenopsis geminata) on colonies of seabirds at Ashmore Reef. Darwin NT, Canberra

    Google Scholar 

  7. Berec L, Kean JM, Epanchin-Niell R et al (2014) Designing efficient surveys: spatial arrangement of sample points for detection of invasive species. Biol Invasions 17:445–459. doi:10.1007/s10530-014-0742-x

    Article  Google Scholar 

  8. Bergstrom DM, Lucieer A, Kiefer K et al (2009) Indirect effects of invasive species removal devastate World Heritage Island. J Appl Ecol 46:73–81. doi:10.1111/j.1365-2664.2008.01601.x

    Article  Google Scholar 

  9. Blomquist SM, Johnson TD, Smith DR et al (2010) Structured decision-making and rapid prototyping to plan a management response to an invasive species. J Fish Wildl Manag 1:19–32. doi:10.3996/JFWM-025

    Article  Google Scholar 

  10. Bode M, Baker CM, Plein M (2015) Eradicating down the food chain: optimal multispecies eradication schedules for a commonly encountered invaded island ecosystem. J Appl Ecol. doi:10.1111/1365-2664.12429

    Google Scholar 

  11. Brooks SE, Oi FM, Koehler PG (2003) Ability of canine termite detectors to locate live termites and discriminate them from non-termite material. J Econ Entomol 96:1259–1266

    Article  PubMed  Google Scholar 

  12. Brown JA, Harris S, Timmins SM (2004) Estimating the maximum interval between repeat surveys. Austral Ecol 29:631–636. doi:10.1111/j.1442-9993.2004.01402.x

    Article  Google Scholar 

  13. Buckley YM, Han Y (2014) Managing the side effects of invasion control. Science 344:975–976. doi:10.1126/science.1254662

    CAS  Article  PubMed  Google Scholar 

  14. Clarke RH, Carter M, Swann G, Thomson J (2011) The status of breeding seabirds and herons at Ashmore Reef, off the Kimberley Coast, Australia. J R Soc West Aust 94:365–376

    Google Scholar 

  15. Courchamp F, Langlais M, Sugihara G (1999) Cats protecting birds: modelling the mesopredator release effect. J Anim Ecol 68:282–292. doi:10.1046/j.1365-2656.1999.00285.x

    Article  Google Scholar 

  16. Courchamp F, Chapuis J-L, Pascal M (2003) Mammal invaders on islands: impact, control and control impact. Biol Rev 78:347–383. doi:10.1017/S1464793102006061

    Article  PubMed  Google Scholar 

  17. Davidovitch L, Stoklosa R, Majer J et al (2009) Info-gap theory and robust design of surveillance for invasive species: the case study of Barrow Island. J Environ Manage 90:2785–2793. doi:10.1016/j.jenvman.2009.03.011

    Article  PubMed  Google Scholar 

  18. Dawson J, Oppel S, Cuthbert RJ et al (2015) Prioritizing islands for the eradication of invasive vertebrates in the United Kingdom overseas territories. Conserv Biol 29:143–153. doi:10.1111/cobi.12347

    Article  PubMed  Google Scholar 

  19. Doherty TS, Glen AS, Nimmo DG et al (2016) Invasive predators and global biodiversity loss. Proc Natl Acad Sci. doi:10.1073/pnas.1602480113

    Google Scholar 

  20. Donlan CJ, Luque GM, Wilcox C (2014) Maximizing return on investment for island restoration and species conservation. Conserv Lett. doi:10.1111/conl.12126

    Google Scholar 

  21. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press, Boca Raton

    Google Scholar 

  22. Epanchin-Niell RS, Haight RG, Berec L et al (2012) Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol Lett 15:803–812. doi:10.1111/j.1461-0248.2012.01800.x

    Article  PubMed  Google Scholar 

  23. Gregory R, Long G (2009) Using structured decision making to help implement a precautionary approach to endangered species management. Risk Anal 29:518–532. doi:10.1111/j.1539-6924.2008.01182.x

    Article  PubMed  Google Scholar 

  24. Guillera-Arroita G, Hauser CE, McCarthy MA (2014) Optimal surveillance strategy for invasive species management when surveys stop after detection. Ecol Evol 4:1751–1760. doi:10.1002/ece3.1056

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474. doi:10.1016/j.tree.2004.07.005

    Article  PubMed  Google Scholar 

  26. Hauser CE, McCarthy MA (2009) Streamlining “search and destroy”: cost-effective surveillance for invasive species management. Ecol Lett 12:683–692. doi:10.1111/j.1461-0248.2009.01323.x

    Article  PubMed  Google Scholar 

  27. Hodgson JC, Clarke RH (2014) A review of the tropical fire ant Solenopsis geminata pilot control program at Ashmore Reef Commonwealth Marine Reserve. Monash University, School of Biological Sciences, Melbourne

    Google Scholar 

  28. Hodgson JC, Abbott KL, Clarke RH (2014) Eradication plan - Tropical Fire Ant Solenopsis geminata at Ashmore Reef Commonwealth Marine Reserve. Monash University, Melbourne

    Google Scholar 

  29. Hoffmann BD (2011) Eradication of populations of an invasive ant in northern Australia: successes, failures and lessons for management. Biodivers Conserv 20:3267–3278. doi:10.1007/s10531-011-0106-0

    Article  Google Scholar 

  30. Hoffmann BD, Luque GM, Bellard C et al (2016) Improving invasive ant eradication as a conservation tool: a review. Biol Conserv 198:37–49. doi:10.1016/j.biocon.2016.03.036

    Article  Google Scholar 

  31. Holmes ND, Campbell KJ, Keitt BS et al (2015) Reporting costs for invasive vertebrate eradications. Biol Invasions 17:1–13. doi:10.1007/s10530-015-0920-5

    Article  Google Scholar 

  32. Holway DA, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  33. Howald G, Donlan CJ, Galván JP et al (2007) Invasive rodent eradication on islands. Conserv Biol 21:1258–1268. doi:10.1111/j.1523-1739.2007.00755.x

    Article  PubMed  Google Scholar 

  34. Jarrad FC, Barrett S, Murray J et al (2010) Ecological aspects of biosecurity surveillance design for the detection of multiple invasive animal species. Biol Invasions 13:803–818. doi:10.1007/s10530-010-9870-0

    Article  Google Scholar 

  35. Jarrad FC, Barrett S, Murray J et al (2011) Improved design method for biosecurity surveillance and early detection of non-indigenous rats. N Z J Ecol 35:132–144

    Google Scholar 

  36. Jones HP, Holmes ND, Butchart SHM et al (2016) Invasive mammal eradication on islands results in substantial conservation gains. Proc Natl Acad Sci. doi:10.1073/pnas.1521179113

    Google Scholar 

  37. Krug RM, Roura-Pascual N, Richardson DM (2010) Clearing of invasive alien plants under different budget scenarios: using a simulation model to test efficiency. Biol Invasions 12:4099–4112. doi:10.1007/s10530-010-9827-3

    Article  Google Scholar 

  38. Lach L, Thomas ML (2008) Invasive ants in Australia: documented and potential ecological consequences. Aust J Entomol 47:275–288. doi:10.1111/j.1440-6055.2008.00659.x

    Article  Google Scholar 

  39. Lampert A, Hastings A, Grosholz ED et al (2014) Optimal approaches for balancing invasive species eradication and endangered species management. Science 344:1028–1031. doi:10.1126/science.1250763

    CAS  Article  PubMed  Google Scholar 

  40. Lei M, Yin Q, Yao X (2015) A method for UAVs detection task planning of multiple starting points. In: 2015 IEEE international conference on mechatronics and automation (ICMA). pp 947–951

  41. Lin H-M, Chi W-L, Lin C-C et al (2011) Fire ant-detecting canines: a complementary method in detecting red imported fire ants. J Econ Entomol 104:225–231. doi:10.1603/EC10298

    Article  PubMed  Google Scholar 

  42. May RM (2001) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  43. McCarthy DP, Donald PF, Scharlemann JPW et al (2012) Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338:946–949. doi:10.1126/science.1229803

    CAS  Article  PubMed  Google Scholar 

  44. McCarthy MA, Moore JL, Morris WK et al (2013) The influence of abundance on detectability. Oikos 122:717–726. doi:10.1111/j.1600-0706.2012.20781.x

    Article  Google Scholar 

  45. McCreless EE, Huff DD, Croll DA et al (2016) Past and estimated future impact of invasive alien mammals on insular threatened vertebrate populations. Nat Commun 7:12488. doi:10.1038/ncomms12488

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Moore JL, Rout TM, Hauser CE et al (2010) Protecting islands from pest invasion: optimal allocation of biosecurity resources between quarantine and surveillance. Biol Conserv 143:1068–1078. doi:10.1016/j.biocon.2010.01.019

    Article  Google Scholar 

  47. Plentovich S, Hebshi A, Conant S (2009) Detrimental effects of two widespread invasive ant species on weight and survival of colonial nesting seabirds in the Hawaiian Islands. Biol Invasions 11:289–298. doi:10.1007/s10530-008-9233-2

    Article  Google Scholar 

  48. Pluess T, Cannon R, Jarošík V et al (2012) When are eradication campaigns successful? A test of common assumptions. Biol Invasions 14:1365–1378. doi:10.1007/s10530-011-0160-2

    Article  Google Scholar 

  49. Porter SD (1988) Impact of temperature on colony growth and developmental rates of the ant, Solenopsis invicta. J Insect Physiol 34:1127–1133. doi:10.1016/0022-1910(88)90215-6

    Article  Google Scholar 

  50. Ramsey DSL, Parkes J, Morrison SA (2009) Quantifying eradication success: the removal of feral pigs from Santa Cruz Island, California. Conserv Biol 23:449–459. doi:10.1111/j.1523-1739.2008.01119.x

    Article  PubMed  Google Scholar 

  51. Ramsey DSL, Parkes JP, Will D et al (2011) Quantifying the success of feral cat eradication, San Nicolas Island, California. N Z J Ecol 35:163–173

    Google Scholar 

  52. Raymond B, McInnes J, Dambacher JM et al (2011) Qualitative modelling of invasive species eradication on subantarctic Macquarie Island. J Appl Ecol 48:181–191. doi:10.1111/j.1365-2664.2010.01916.x

    Article  Google Scholar 

  53. Regan TJ, McCarthy MA, Baxter PWJ et al (2006) Optimal eradication: when to stop looking for an invasive plant. Ecol Lett 9:759–766. doi:10.1111/j.1461-0248.2006.00920.x

    Article  PubMed  Google Scholar 

  54. Rout TM, Salomon Y, McCarthy MA (2009a) Using sighting records to declare eradication of an invasive species. J Appl Ecol 46:110–117. doi:10.1111/j.1365-2664.2008.01586.x

    Article  Google Scholar 

  55. Rout TM, Thompson CJ, McCarthy MA (2009b) Robust decisions for declaring eradication of invasive species. J Appl Ecol 46:782–786. doi:10.1111/j.1365-2664.2009.01678.x

    Article  Google Scholar 

  56. Rout TM, Moore JL, Possingham HP, McCarthy MA (2011) Allocating biosecurity resources between preventing, detecting, and eradicating island invasions. Ecol Econ 71:54–62. doi:10.1016/j.ecolecon.2011.09.009

    Article  Google Scholar 

  57. Rout TM, Kirkwood R, Sutherland DR et al (2014a) When to declare successful eradication of an invasive predator? Anim Conserv 17:125–132. doi:10.1111/acv.12065

    Article  Google Scholar 

  58. Rout TM, Moore JL, McCarthy MA (2014b) Prevent, search, or destroy? A partially observable model for invasive species management. J Appl Ecol. doi:10.1111/1365-2664.12234

    Google Scholar 

  59. Spring D, Cacho OJ (2014) Estimating eradication probabilities and trade-offs for decision analysis in invasive species eradication programs. Biol Invasions 17:191–204. doi:10.1007/s10530-014-0719-9

    Article  Google Scholar 

  60. Stringer LD, Suckling DM, Baird D et al (2011) Sampling efficacy for the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae). Environ Entomol 40:1276–1284. doi:10.1603/EN11002

    Article  PubMed  Google Scholar 

  61. Veitch CR, Clout MN (2002) Turning the tide: the eradication of invasive species. In: Proceedings of the international conference on eradication of island invasives. IUCN SCC Invasive Species Specialist Group, IUCN, Gland, Switzerland and Cambridge, UK

  62. Ward DF, Stanley MC (2013) Site occupancy and detection probability of Argentine ant populations. J Appl Entomol 137:197–203. doi:10.1111/j.1439-0418.2012.01722.x

    Article  Google Scholar 

  63. Whittle PJL, Stoklosa R, Barrett S et al (2013) A method for designing complex biosecurity surveillance systems: detecting non-indigenous species of invertebrates on Barrow Island. Divers Distrib 19:629–639. doi:10.1111/ddi.12056

    Article  Google Scholar 

  64. Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16:454–459. doi:10.1016/S0169-5347(01)02194-2

    Article  Google Scholar 

Download references

Acknowledgements

We thank Kirsti Abbott, Shane Baylis, Michael Bode, Jake Ferguson, Ben Hoffmann, Michael McCarthy and José Lahoz-Monfort for insight and discussion. This research was jointly funded by the Department of the Environment and Energy (formerly DSEWPaC) and Monash University. Christopher Baker was funded by The University of Melbourne, the National Environmental Research Project Environmental Decisions Hub and is the recipient of a John Stocker Postdoctoral Fellowship from the Science and Industry Endowment Fund. This research was conducted at Ashmore Reef Commonwealth Marine Reserve under Permit No. 006-ARRR-110421-01. The authors wish to thank the relevant staff at the Department of the Environment, especially Anna Farnham, Rod Atkins and Miranda Carver. The authors have no conflict of interest to declare.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Baker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6872 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baker, C.M., Hodgson, J.C., Tartaglia, E. et al. Modelling tropical fire ant (Solenopsis geminata) dynamics and detection to inform an eradication project. Biol Invasions 19, 2959–2970 (2017). https://doi.org/10.1007/s10530-017-1499-9

Download citation

Keywords

  • Ashmore Reef
  • Eradication
  • Invasive species
  • Invertebrates
  • Optimal detection
  • Stochastic modelling
  • Monitoring