Biological Invasions

, Volume 19, Issue 10, pp 2959–2970 | Cite as

Modelling tropical fire ant (Solenopsis geminata) dynamics and detection to inform an eradication project

  • Christopher M. BakerEmail author
  • Jarrod C. Hodgson
  • Elena Tartaglia
  • Rohan H. Clarke
Original Paper


Invasive species threaten endangered species worldwide and substantial effort is focused on their control. Eradication projects require critical resource allocation decisions, as they affect both the likelihood of success and the overall cost. However, these complex decisions must often be made within data-poor environments. Here we develop a mathematical framework to assist in resource allocation for invasive species control projects and we apply it to the proposed eradication of the tropical fire ant (Solenopsis geminata) from the islands of Ashmore Reef in the Timor Sea. Our framework contains two models: a population model and a detection model. Our stochastic population model is used to predict ant abundance through time and allows us to estimate the probability of eradication. Using abundance predictions from the population model, we use the detection model to predict the probability of ant detection through time. These models inform key decisions throughout the project, which include deciding how many baiting events should take place, deciding whether to invest in detector dogs and setting surveillance effort to confirm eradication following control. We find that using a combination of insect growth regulator and toxins are required to achieve a high probability of eradication over 2 years, and we find that using two detector dogs may be more cost-effective than the use of lure deployment, provided that they are used across the life of the project. Our analysis lays a foundation for making decisions about control and detection throughout the project and provides specific advice about resource allocation.


Ashmore Reef Eradication Invasive species Invertebrates Optimal detection Stochastic modelling Monitoring 



We thank Kirsti Abbott, Shane Baylis, Michael Bode, Jake Ferguson, Ben Hoffmann, Michael McCarthy and José Lahoz-Monfort for insight and discussion. This research was jointly funded by the Department of the Environment and Energy (formerly DSEWPaC) and Monash University. Christopher Baker was funded by The University of Melbourne, the National Environmental Research Project Environmental Decisions Hub and is the recipient of a John Stocker Postdoctoral Fellowship from the Science and Industry Endowment Fund. This research was conducted at Ashmore Reef Commonwealth Marine Reserve under Permit No. 006-ARRR-110421-01. The authors wish to thank the relevant staff at the Department of the Environment, especially Anna Farnham, Rod Atkins and Miranda Carver. The authors have no conflict of interest to declare.

Supplementary material

10530_2017_1499_MOESM1_ESM.pdf (6.7 mb)
Supplementary material 1 (PDF 6872 kb)


  1. Allen CR, Fontaine JJ, Pope KL, Garmestani AS (2011) Adaptive management for a turbulent future. J Environ Manage 92:1339–1345. doi: 10.1016/j.jenvman.2010.11.019 CrossRefPubMedGoogle Scholar
  2. Asano E, Cassill DL (2011) Impact of worker longevity and other endogenous factors on colony size in the fire ant, Solenopsis invicta. Insectes Soc 58:551–557. doi: 10.1007/s00040-011-0179-5 CrossRefGoogle Scholar
  3. Baker CM, Bode M (2015) Placing invasive species management in a spatiotemporal context. Ecol Appl. doi: 10.1890/15-0095.1 PubMedGoogle Scholar
  4. Barrett S, Whittle P, Mengersen K, Stoklosa R (2009) Biosecurity threats: the design of surveillance systems, based on power and risk. Environ Ecol Stat 17:503–519. doi: 10.1007/s10651-009-0113-4 CrossRefGoogle Scholar
  5. Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biol Lett 12:20150623. doi: 10.1098/rsbl.2015.0623 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bellio MG (2007) A preliminary ecological risk assessment of the impact of tropical fire ants (Solenopsis geminata) on colonies of seabirds at Ashmore Reef. Darwin NT, CanberraGoogle Scholar
  7. Berec L, Kean JM, Epanchin-Niell R et al (2014) Designing efficient surveys: spatial arrangement of sample points for detection of invasive species. Biol Invasions 17:445–459. doi: 10.1007/s10530-014-0742-x CrossRefGoogle Scholar
  8. Bergstrom DM, Lucieer A, Kiefer K et al (2009) Indirect effects of invasive species removal devastate World Heritage Island. J Appl Ecol 46:73–81. doi: 10.1111/j.1365-2664.2008.01601.x CrossRefGoogle Scholar
  9. Blomquist SM, Johnson TD, Smith DR et al (2010) Structured decision-making and rapid prototyping to plan a management response to an invasive species. J Fish Wildl Manag 1:19–32. doi: 10.3996/JFWM-025 CrossRefGoogle Scholar
  10. Bode M, Baker CM, Plein M (2015) Eradicating down the food chain: optimal multispecies eradication schedules for a commonly encountered invaded island ecosystem. J Appl Ecol. doi: 10.1111/1365-2664.12429 Google Scholar
  11. Brooks SE, Oi FM, Koehler PG (2003) Ability of canine termite detectors to locate live termites and discriminate them from non-termite material. J Econ Entomol 96:1259–1266CrossRefPubMedGoogle Scholar
  12. Brown JA, Harris S, Timmins SM (2004) Estimating the maximum interval between repeat surveys. Austral Ecol 29:631–636. doi: 10.1111/j.1442-9993.2004.01402.x CrossRefGoogle Scholar
  13. Buckley YM, Han Y (2014) Managing the side effects of invasion control. Science 344:975–976. doi: 10.1126/science.1254662 CrossRefPubMedGoogle Scholar
  14. Clarke RH, Carter M, Swann G, Thomson J (2011) The status of breeding seabirds and herons at Ashmore Reef, off the Kimberley Coast, Australia. J R Soc West Aust 94:365–376Google Scholar
  15. Courchamp F, Langlais M, Sugihara G (1999) Cats protecting birds: modelling the mesopredator release effect. J Anim Ecol 68:282–292. doi: 10.1046/j.1365-2656.1999.00285.x CrossRefGoogle Scholar
  16. Courchamp F, Chapuis J-L, Pascal M (2003) Mammal invaders on islands: impact, control and control impact. Biol Rev 78:347–383. doi: 10.1017/S1464793102006061 CrossRefPubMedGoogle Scholar
  17. Davidovitch L, Stoklosa R, Majer J et al (2009) Info-gap theory and robust design of surveillance for invasive species: the case study of Barrow Island. J Environ Manage 90:2785–2793. doi: 10.1016/j.jenvman.2009.03.011 CrossRefPubMedGoogle Scholar
  18. Dawson J, Oppel S, Cuthbert RJ et al (2015) Prioritizing islands for the eradication of invasive vertebrates in the United Kingdom overseas territories. Conserv Biol 29:143–153. doi: 10.1111/cobi.12347 CrossRefPubMedGoogle Scholar
  19. Doherty TS, Glen AS, Nimmo DG et al (2016) Invasive predators and global biodiversity loss. Proc Natl Acad Sci. doi: 10.1073/pnas.1602480113 Google Scholar
  20. Donlan CJ, Luque GM, Wilcox C (2014) Maximizing return on investment for island restoration and species conservation. Conserv Lett. doi: 10.1111/conl.12126 Google Scholar
  21. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press, Boca RatonGoogle Scholar
  22. Epanchin-Niell RS, Haight RG, Berec L et al (2012) Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol Lett 15:803–812. doi: 10.1111/j.1461-0248.2012.01800.x CrossRefPubMedGoogle Scholar
  23. Gregory R, Long G (2009) Using structured decision making to help implement a precautionary approach to endangered species management. Risk Anal 29:518–532. doi: 10.1111/j.1539-6924.2008.01182.x CrossRefPubMedGoogle Scholar
  24. Guillera-Arroita G, Hauser CE, McCarthy MA (2014) Optimal surveillance strategy for invasive species management when surveys stop after detection. Ecol Evol 4:1751–1760. doi: 10.1002/ece3.1056 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474. doi: 10.1016/j.tree.2004.07.005 CrossRefPubMedGoogle Scholar
  26. Hauser CE, McCarthy MA (2009) Streamlining “search and destroy”: cost-effective surveillance for invasive species management. Ecol Lett 12:683–692. doi: 10.1111/j.1461-0248.2009.01323.x CrossRefPubMedGoogle Scholar
  27. Hodgson JC, Clarke RH (2014) A review of the tropical fire ant Solenopsis geminata pilot control program at Ashmore Reef Commonwealth Marine Reserve. Monash University, School of Biological Sciences, MelbourneGoogle Scholar
  28. Hodgson JC, Abbott KL, Clarke RH (2014) Eradication plan - Tropical Fire Ant Solenopsis geminata at Ashmore Reef Commonwealth Marine Reserve. Monash University, MelbourneGoogle Scholar
  29. Hoffmann BD (2011) Eradication of populations of an invasive ant in northern Australia: successes, failures and lessons for management. Biodivers Conserv 20:3267–3278. doi: 10.1007/s10531-011-0106-0 CrossRefGoogle Scholar
  30. Hoffmann BD, Luque GM, Bellard C et al (2016) Improving invasive ant eradication as a conservation tool: a review. Biol Conserv 198:37–49. doi: 10.1016/j.biocon.2016.03.036 CrossRefGoogle Scholar
  31. Holmes ND, Campbell KJ, Keitt BS et al (2015) Reporting costs for invasive vertebrate eradications. Biol Invasions 17:1–13. doi: 10.1007/s10530-015-0920-5 CrossRefGoogle Scholar
  32. Holway DA, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233CrossRefGoogle Scholar
  33. Howald G, Donlan CJ, Galván JP et al (2007) Invasive rodent eradication on islands. Conserv Biol 21:1258–1268. doi: 10.1111/j.1523-1739.2007.00755.x CrossRefPubMedGoogle Scholar
  34. Jarrad FC, Barrett S, Murray J et al (2010) Ecological aspects of biosecurity surveillance design for the detection of multiple invasive animal species. Biol Invasions 13:803–818. doi: 10.1007/s10530-010-9870-0 CrossRefGoogle Scholar
  35. Jarrad FC, Barrett S, Murray J et al (2011) Improved design method for biosecurity surveillance and early detection of non-indigenous rats. N Z J Ecol 35:132–144Google Scholar
  36. Jones HP, Holmes ND, Butchart SHM et al (2016) Invasive mammal eradication on islands results in substantial conservation gains. Proc Natl Acad Sci. doi: 10.1073/pnas.1521179113 Google Scholar
  37. Krug RM, Roura-Pascual N, Richardson DM (2010) Clearing of invasive alien plants under different budget scenarios: using a simulation model to test efficiency. Biol Invasions 12:4099–4112. doi: 10.1007/s10530-010-9827-3 CrossRefGoogle Scholar
  38. Lach L, Thomas ML (2008) Invasive ants in Australia: documented and potential ecological consequences. Aust J Entomol 47:275–288. doi: 10.1111/j.1440-6055.2008.00659.x CrossRefGoogle Scholar
  39. Lampert A, Hastings A, Grosholz ED et al (2014) Optimal approaches for balancing invasive species eradication and endangered species management. Science 344:1028–1031. doi: 10.1126/science.1250763 CrossRefPubMedGoogle Scholar
  40. Lei M, Yin Q, Yao X (2015) A method for UAVs detection task planning of multiple starting points. In: 2015 IEEE international conference on mechatronics and automation (ICMA). pp 947–951Google Scholar
  41. Lin H-M, Chi W-L, Lin C-C et al (2011) Fire ant-detecting canines: a complementary method in detecting red imported fire ants. J Econ Entomol 104:225–231. doi: 10.1603/EC10298 CrossRefPubMedGoogle Scholar
  42. May RM (2001) Stability and complexity in model ecosystems. Princeton University Press, PrincetonGoogle Scholar
  43. McCarthy DP, Donald PF, Scharlemann JPW et al (2012) Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338:946–949. doi: 10.1126/science.1229803 CrossRefPubMedGoogle Scholar
  44. McCarthy MA, Moore JL, Morris WK et al (2013) The influence of abundance on detectability. Oikos 122:717–726. doi: 10.1111/j.1600-0706.2012.20781.x CrossRefGoogle Scholar
  45. McCreless EE, Huff DD, Croll DA et al (2016) Past and estimated future impact of invasive alien mammals on insular threatened vertebrate populations. Nat Commun 7:12488. doi: 10.1038/ncomms12488 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Moore JL, Rout TM, Hauser CE et al (2010) Protecting islands from pest invasion: optimal allocation of biosecurity resources between quarantine and surveillance. Biol Conserv 143:1068–1078. doi: 10.1016/j.biocon.2010.01.019 CrossRefGoogle Scholar
  47. Plentovich S, Hebshi A, Conant S (2009) Detrimental effects of two widespread invasive ant species on weight and survival of colonial nesting seabirds in the Hawaiian Islands. Biol Invasions 11:289–298. doi: 10.1007/s10530-008-9233-2 CrossRefGoogle Scholar
  48. Pluess T, Cannon R, Jarošík V et al (2012) When are eradication campaigns successful? A test of common assumptions. Biol Invasions 14:1365–1378. doi: 10.1007/s10530-011-0160-2 CrossRefGoogle Scholar
  49. Porter SD (1988) Impact of temperature on colony growth and developmental rates of the ant, Solenopsis invicta. J Insect Physiol 34:1127–1133. doi: 10.1016/0022-1910(88)90215-6 CrossRefGoogle Scholar
  50. Ramsey DSL, Parkes J, Morrison SA (2009) Quantifying eradication success: the removal of feral pigs from Santa Cruz Island, California. Conserv Biol 23:449–459. doi: 10.1111/j.1523-1739.2008.01119.x CrossRefPubMedGoogle Scholar
  51. Ramsey DSL, Parkes JP, Will D et al (2011) Quantifying the success of feral cat eradication, San Nicolas Island, California. N Z J Ecol 35:163–173Google Scholar
  52. Raymond B, McInnes J, Dambacher JM et al (2011) Qualitative modelling of invasive species eradication on subantarctic Macquarie Island. J Appl Ecol 48:181–191. doi: 10.1111/j.1365-2664.2010.01916.x CrossRefGoogle Scholar
  53. Regan TJ, McCarthy MA, Baxter PWJ et al (2006) Optimal eradication: when to stop looking for an invasive plant. Ecol Lett 9:759–766. doi: 10.1111/j.1461-0248.2006.00920.x CrossRefPubMedGoogle Scholar
  54. Rout TM, Salomon Y, McCarthy MA (2009a) Using sighting records to declare eradication of an invasive species. J Appl Ecol 46:110–117. doi: 10.1111/j.1365-2664.2008.01586.x CrossRefGoogle Scholar
  55. Rout TM, Thompson CJ, McCarthy MA (2009b) Robust decisions for declaring eradication of invasive species. J Appl Ecol 46:782–786. doi: 10.1111/j.1365-2664.2009.01678.x CrossRefGoogle Scholar
  56. Rout TM, Moore JL, Possingham HP, McCarthy MA (2011) Allocating biosecurity resources between preventing, detecting, and eradicating island invasions. Ecol Econ 71:54–62. doi: 10.1016/j.ecolecon.2011.09.009 CrossRefGoogle Scholar
  57. Rout TM, Kirkwood R, Sutherland DR et al (2014a) When to declare successful eradication of an invasive predator? Anim Conserv 17:125–132. doi: 10.1111/acv.12065 CrossRefGoogle Scholar
  58. Rout TM, Moore JL, McCarthy MA (2014b) Prevent, search, or destroy? A partially observable model for invasive species management. J Appl Ecol. doi: 10.1111/1365-2664.12234 Google Scholar
  59. Spring D, Cacho OJ (2014) Estimating eradication probabilities and trade-offs for decision analysis in invasive species eradication programs. Biol Invasions 17:191–204. doi: 10.1007/s10530-014-0719-9 CrossRefGoogle Scholar
  60. Stringer LD, Suckling DM, Baird D et al (2011) Sampling efficacy for the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae). Environ Entomol 40:1276–1284. doi: 10.1603/EN11002 CrossRefPubMedGoogle Scholar
  61. Veitch CR, Clout MN (2002) Turning the tide: the eradication of invasive species. In: Proceedings of the international conference on eradication of island invasives. IUCN SCC Invasive Species Specialist Group, IUCN, Gland, Switzerland and Cambridge, UKGoogle Scholar
  62. Ward DF, Stanley MC (2013) Site occupancy and detection probability of Argentine ant populations. J Appl Entomol 137:197–203. doi: 10.1111/j.1439-0418.2012.01722.x CrossRefGoogle Scholar
  63. Whittle PJL, Stoklosa R, Barrett S et al (2013) A method for designing complex biosecurity surveillance systems: detecting non-indigenous species of invertebrates on Barrow Island. Divers Distrib 19:629–639. doi: 10.1111/ddi.12056 CrossRefGoogle Scholar
  64. Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16:454–459. doi: 10.1016/S0169-5347(01)02194-2 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Biological SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.CSIRO Ecosystem Sciences, Ecosciences PrecinctBrisbaneAustralia
  3. 3.School of BiosciencesThe University of MelbourneMelbourneAustralia
  4. 4.School of Biological SciencesMonash UniversityMelbourneAustralia
  5. 5.School of Biological SciencesUniversity of AdelaideAdelaideAustralia
  6. 6.School of Mathematics and StatisticsThe University of MelbourneMelbourneAustralia

Personalised recommendations