Skip to main content

Advertisement

Log in

Challenges to planted forest health in developing economies

  • Forest Invasions
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

A number of strategies have been proposed to manage the increasing threat of insect pests to non-native plantation forests, but the implementation of these strategies can be especially challenging in developing economies, such as in countries of sub-Saharan Africa. As in other parts of the world, invasions of non-native insect pests in this region are increasing due to increased trade as well as inadequate quarantine regulations and implementation. Some of these invasions result in substantial socio-economic and environmental losses. In addition, new host associations of native insects on the non-native tree hosts continue to occur. Identification of these insect pests is becoming increasingly difficult due to declining taxonomic expertise, and a lack of resources and research capacity hinders the widespread and effective deployment of resistant trees and biological control agents. The necessity to engage with an extremely diverse stakeholder community also complicates implementing management strategies. We propose that a regional strategy is needed for developing regions such as sub-Saharan Africa, where limited resources can be optimized and shared risks managed collectively. This strategy should look beyond the standard recommendations and include the development of an inter-regional phytosanitary agency, exploiting new technologies to identify insect pests, and the use of “citizen science” projects. Local capacity is also needed to develop and test trees for pest tolerance and to deploy biological control agents. Ideally, research and capacity development should, at least initially, be concentrated in centres of excellence to reduce costs and optimize efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bebber DP, Holmes T, Smith D, Gurr SJ (2014) Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol 202:901–910

    Article  PubMed  PubMed Central  Google Scholar 

  • Boreham GR (2006) A survey of cossid moth attack in Eucalyptus nitens on the Mpumalanga Highveld of South Africa. South Afr For J 206:23–26

    Google Scholar 

  • Bouwer MC, Slippers B, Degefu D, Wingfield MJ, Lawson S, Rohwer ER (2015) Identification of the sex pheromone of the tree infesting Cossid Moth Coryphodema tristis (Lepidoptera: Cossidae). PLoS ONE 10:e0118575

    Article  PubMed  PubMed Central  Google Scholar 

  • Branco M, Brockerhoff EG, Castagneyrol B, Orazio C, Jactel H, Saura S (2015) Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. J Appl Ecol 52:69–77

    Article  Google Scholar 

  • Brockerhoff EG, Bain J, Kimberley M, Knížek M (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J For Res 36:289–298

    Article  Google Scholar 

  • Brockerhoff EG, Jactel H, Parrotta JA, Ferraz SFB (2013) Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For Ecol Manage 301:43–50

    Article  Google Scholar 

  • Bush SJ, Slippers B, Neser S, Harney M, Dittrich-Schröder G, Hurley BP (2016) Six recently recorded Australian insects associated with Eucalyptus in South Africa. Afr Entomol 24:539–544

    Article  Google Scholar 

  • Degefu D, Hurley BP, Garnas J, Wingfied MJ, Ahumada R, Slippers B (2012) Parallel host range expansion in two unrelated cossid moths infesting Eucalyptus nitens on two continents. Ecol Entomol 38:112–116

    Article  Google Scholar 

  • Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172

    Article  Google Scholar 

  • Dittrich-Schröder G (2014) Molecular ecology and management of Leptocybe invasa (Hymenoptera: Eulophidae) in South Africa. University of Pretoria, Pretoria

    Google Scholar 

  • Dittrich-Schröder G, Wingfield MJ, Hurley BP, Slippers B (2012) Diversity in Eucalyptus susceptibility to the gall-forming wasp Leptocybe invasa. Agric For Entomol 14:419–427

    Article  Google Scholar 

  • Dittrich-Schröder G, Harney M, Neser S, Joffe T, Bush S, Hurley BP, Wingfield MJ, Slippers B (2014) Biology and host preference of Selitrichodes neseri: a potential biological control agent of the Eucalyptus gall wasp, Leptocybe invasa. Biol Control 78:33–41

    Article  Google Scholar 

  • FAO (2010) Global forest resources assessment 2010—main report. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2015) Global forest resources assessment 2015: How are the world’s forests changing?. Food and Agricultural Organization (FAO), United Nations, Rome

    Google Scholar 

  • Faulkner KT, Hurley BP, Robertson MP, Rouget M, Wilson JRU (2017) The balance of trade in alien species between South Africa and the rest of the world. Bothalia 47:a2157

    Article  Google Scholar 

  • Gardiner MM, Allee LL, Brown PMJ, Losey JE, Roy HE, Smyth RR (2012) Lessons from lady beetles: accuracy of monitoring data from US and UK citizen-science programs. Front Ecol Environ 10:471–476

    Article  Google Scholar 

  • Garnas JR, Hurley BP, Slippers B, Wingfield MJ (2012) Biological control of forest plantation pests in an interconnected world requires greater international focus. Int J Pest Manag 58:211–223

    Article  Google Scholar 

  • Gebeyehu S, Hurley BP, Wingfield MJ (2005) A new lepidopteran insect pest discovered on commercially grown Eucalyptus nitens in South Africa. S Afr J Sci 101:26–28

    CAS  Google Scholar 

  • Govender P (2007) Status of seedling establishment pests of Acacia mearnsii De Wild. (Mimosaceae) in South Africa. S Afr J Sci 103:141–147

    CAS  Google Scholar 

  • Haack RA (2006) Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can J For Res 36:269–288

    Article  Google Scholar 

  • Hajek AE, Hurley BP, Kenis M, Garnas JR, Bush SJ, Wingfield MJ, van Lenteren JC, Cock MJW (2016) Exotic biological control agents: A solution or contribution to arthropod invasions? Biol Invasions 18:953–969

    Article  Google Scholar 

  • Heine B, Nurse D (2000) African languages: an introduction. Cambridge University Press, Cambridge

    Google Scholar 

  • Hulbert J (2016) Citizen science tools available for ecological research in South Africa. S Afr J Sci 112:a0152

    Article  Google Scholar 

  • Hunter GC, Van Der Merwe NA, Burgess TI, Carnegie AJ, Wingfield BD, Crous PW, Wingfield MJ (2008) Global movement and population biology of Mycosphaerella nubilosa infecting leaves of cold-tolerant Eucalyptus globulus and E. nitens. Plant Pathol 57:235–242

    Article  Google Scholar 

  • Hurley BP, Slippers B, Wingfield MJ (2007) A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hemisphere. Agric For Entomol 9:159–171

    Article  Google Scholar 

  • Hurley BP, Croft P, Verleur M, Wingfield MJ, Slippers B (2012a) The control of the Sirex woodwasp in diverse environments: the South African experience. In: Slippers B, de Groot P, Wingfied MJ (eds) The Sirex woodwasp and its fungal symbiont. Springer, Dordrecht, pp 247–264

    Chapter  Google Scholar 

  • Hurley BP, Slippers J, Wingfield MJ, Dyer C, Slippers B (2012b) Perception and knowledge of the Sirex woodwasp and other forest pests in South Africa. Agric For Entomol 14:306–316

    Article  Google Scholar 

  • Hurley BP, Garnas J, Cooperband MF (2015) Assessing trap and lure effectiveness for the monitoring of Sirex noctilio. Agric For Entomol 17:64–70

    Article  Google Scholar 

  • Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions 18:921–933

    Article  Google Scholar 

  • Iglesias-Trabado G, Wilstermann D (2008) Eucalyptus universalis. Global cultivated eucalypt forests map 2008. GIT Forestry Consulting’s EUCALYPTOLOGICS. http://www.git-forestry.com

  • Impson FAC, Kleinjan CA, Hoffmann JH, Post JA (2008) Dasineura rubiformis (Diptera: Cecidomyiidae), a new biological control agent for Acacia mearnsii in South Africa. S Afr J Sci 104:247–248

    Google Scholar 

  • Jacobs DH, Neser S (2005) Thaumastocoris australicus kirkaldy (Heteroptera: Thaumastocoridae): a new insect arrival in South Africa, damaging to Eucalyptus trees. S Afr J Sci 101:233–236

    Google Scholar 

  • Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848

    Article  PubMed  Google Scholar 

  • Jactel H, Branco M, Duncker P, Gardiner B, Grodzki W, Långström B (2012) A multi-criteria risk analysis to evaluate impacts of forest management alternatives on forest health in Europe. Ecol Soc 17:52

    Article  Google Scholar 

  • Kenis M, Rabitsch W, Auger-Rozenberg MA, Roques A (2007) How can alien species inventories and interception data help us prevent insect invasions? Bull Entomol Res 97:489–502

    Article  CAS  PubMed  Google Scholar 

  • King J, Alfaro R (2004) Genetic resistance of Sitka spruce (Picea sitchensis) populations to the white pine weevil (Pissodes strobi): distribution of resistance. Forestry 77:269–278

    Article  Google Scholar 

  • Klapwijk MJ, Bylund H, Schroeder M, Björkman C (2016) Forest management and natural biocontrol of insect pests. Forestry 89:253–262

    Article  Google Scholar 

  • Kroon DM (1999) Lepidoptera of Southern Africa. Lepidopterists’ Society of Southern Africa, Jukskei Park

    Google Scholar 

  • Leung B, Springborn MR, Turner JA, Brockerhoff EG (2014) Pathway-level risk analysis: the net present value of an invasive species policy in the US. Front Ecol Environ 12:273–279

    Article  Google Scholar 

  • Liebhold AM (2012) Forest pest management in a changing world. Int J Pest Manag 58:289–295

    Article  Google Scholar 

  • Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ 10:135–143

    Article  Google Scholar 

  • Mamle AM, Roux J (2015) Diseases of plantation forestry trees in southern Ghana. Int J Phytopathol 4:5–13

    Google Scholar 

  • Mapondera TS, Burgess T, Matsuki M, Oberprieler RG (2012) Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini). Aust J Entomol 51:175–188

    Article  Google Scholar 

  • Marzano M, Dandy N, Bayliss HR, Porth E, Potter C (2015) Part of the solution? Stakeholder awareness, information and engagement in tree health issues. Biol Invasions 17:1961–1977

    Article  Google Scholar 

  • McTaggart AR, Doungsa-ard C, Wingfield MJ, Roux J (2015) Uromycladium acaciae, the cause of a sudden, severe disease epidemic on Acacia mearnsii in South Africa. Australas Plant Pathol 44:637–645

    Article  Google Scholar 

  • Mendel Z, Protasov A, Fisher N, La Salle J (2004) Taxonomy and biology of Leptocybe invasa gen. & sp. n. (Hymenoptera: Eulophidae), an invasive gall inducer on Eucalyptus. Aust J Entomol 43:101–113

    Article  Google Scholar 

  • Miller D, Clark AF (1935) Sirex noctilio (Hym.) and its parasite in New Zealand. Bull Entomol Res 26:149–154

    Article  Google Scholar 

  • Murphy ST (1996) Status and impact of invasive conifer aphid pests in Africa. In: Paper presented at the IUFRO symposium on impact of diseases and insect pests in tropical forests, Peechi, India, 23–26 Nov 1993

  • Mutitu KE, Otieno B, Oeba V, Nyeko P, Day RK (2007) Farmers knowledge and perceptions on management of L. Invasa on Eucalyptus species in western Kenya. Discov Innov 18:287–293

    Google Scholar 

  • Mutitu EK, Garnas J, Hurley BP, Wingfied MJ, Harney M, Bush SJ, Slippers B (2013) Biology and rearing of Cleruchoides noackae (Hymenoptera: Mymaridae), an egg parasitoid for the biological control of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae). J Econ Entomol 106:1979–1985

    Article  PubMed  Google Scholar 

  • Nair KSS (2001) Pest outbreaks in tropical forest plantations: is there a greater risk for exotic tree species? Centre for International Forestry Research, Kota Bogor

    Google Scholar 

  • Nugnes F, Gebiola M, Monti MM, Gualtieri L, Giorgini M, Wang J, Bernardo U (2015) Genetic diversity of the invasive gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex-ratio differences. PLoS ONE 10:e0124660

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyeko P, Mutitu E, Day R (2007) Farmers’ knowledge, perceptions and management of the gall-forming wasp, Leptocybe invasa (Hymenoptera: Eulophidae), on Eucalyptus species in Uganda. Int J Pest Manag 53:111–119

    Article  Google Scholar 

  • Nyeko P, Mutitu EK, Day RK (2009) Eucalyptus infestation by Leptocybe invasa in Uganda. Afr J Ecol 47:299–307

    Article  Google Scholar 

  • Okelo O (1972) Life history studies of Gonometa podocarpi Aurivillius (Lepidoptera: Lasciocampidae) in East Africa. Ohio J Sci 72:301–303

    Google Scholar 

  • Olivier W (2010) There is honey in the forest: the history of forestry in South Africa. South African Institute of Forestry, Pretoria

    Google Scholar 

  • Olivier-Espejel S (2016) Patterns and drivers of insect community diversity and composition in nonnative black wattle and pine plantations in South Africa. University of Pretoria, Pretoria

    Google Scholar 

  • Olivier-Espejel S, Hurley BP, Garnas J (2017) Assessment of beetle diversity, community composition and potential threats to forestry using kairomone-baited traps. Bull Entomol Res 107:106–117

    Article  CAS  PubMed  Google Scholar 

  • Paine TD, Steinbauer MJ, Lawson SA (2011) Native and exotic pests of Eucalyptus: a worldwide perspective. Annu Rev Entomol 56:181–201

    Article  CAS  PubMed  Google Scholar 

  • Payn T, Carnus J-M, Freer-Smith P, Kimberley M, Kollert W, Liu S, Orazio C, Rodriguez L et al (2015) Changes in planted forests and future global implications. For Ecol Manage 352:57–67

    Article  Google Scholar 

  • Petty EW (1917) The quince borer and its control, vol 2. Government Printing and Stationery Office, Pretoria

    Google Scholar 

  • Ramsfield TD, Bentz BJ, Faccoli M, Jactel H, Brockerhoff EG (2016) Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. Forestry 89:245–252

    Article  Google Scholar 

  • Ridley GS, Bain J, Bulman LS, Dick MA, Kay MK (2000) Threats to New Zealand’s indigenous forests from exotic pathogens and pests, vol 142. Department of Conservation, Wellington

    Google Scholar 

  • Roques A, Rabitsch W, Rasplus J-Y, Lopez-Vaamonde C, Nentwig W, Kenis M (2009) Alien terrestrial invertebrates of Europe. In: DAISIE (ed) Handbook of alien species in Europe, vol 3. Invading nature—Springer series in invasion ecology. Springer, Berlin, pp 63–79

  • Roux J, Hurley BP, Wingfied MJ (2012) Diseases and pests of eucalypts, pines and wattle. In: Bredenkamp BV, Upfold SJ (eds) South African forestry handbook, 5th edn. South African Institute for Forestry, Pietermaritzburg, pp 303–336

    Google Scholar 

  • Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D et al (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250

    Article  CAS  PubMed  Google Scholar 

  • Sarvary MA, Cooperband MF, Hajek AE (2015) The importance of olfactory and visual cues in developing better monitoring tools for Sirex noctilio (Hymenoptera: Siricidae). Agric For Entomol 17:29–35

    Article  Google Scholar 

  • Schabel HG (2006) Forest entomology in East Africa: forest insects of Tanzania. Springer, Dordrecht

    Google Scholar 

  • Scholtz CH, Chown SL (1995) Insects in southern Africa: How many species are there? S Afr J Sci 91:124–126

    Google Scholar 

  • Searle SD (1997) Acacia meransii De Wild. (Black Wattle) in Australia. In: Brown AG, Ko HC (eds) Black wattle and its utilisation, vol 97/77. RIRDC, Wagga Wagga, pp 1–13

    Google Scholar 

  • Sharma S, Tara JS, Bhatia S (2013) Bionomics of Hyblaea puera (Lepidoptera: Hyblaeidae), a serious pest of Teak (Tectona grandis) from Jammu (India). Munis Entomol Zool 8:139–147

    Google Scholar 

  • Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12:1–20

    Article  Google Scholar 

  • Skarpaas O, Økland B (2009) Timber import and the risk of forest pest introductions. J Appl Ecol 46:55–63

    Article  Google Scholar 

  • Slippers B, Hurley BP, Wingfield MJ (2015) Sirex woodwasp: a model for evolving management paradigms of invasive forest pests. Annu Rev Entomol 60:601–619

    Article  CAS  PubMed  Google Scholar 

  • Talbot PHB (1977) The Sirex-Amylostereum-Pinus association. Annu Rev Phytopathol 15:41–54

    Article  Google Scholar 

  • Tooke FGC (1955) The Eucalyptus snout beetle, Gonipterus scutellatus Gyll. A study of its ecology and control by biological means, vol 3. Pretoria

  • Tribe GD (1995) The woodwasp Sirex noctilio Fabricius (Hymenoptera: Siricidae), a pest of Pinus species, now established in South Africa. Afr Entomol 3:215–217

    Google Scholar 

  • Turnbull JW (1999) Eucalypt plantations. New For 17:37–52

    Article  Google Scholar 

  • UNDESA (2015) World population prospects: the 2015 revision, Key findings and advance tables. United Nations, New York

    Google Scholar 

  • Vira B, Wildburger C, Mansourian S (2015) Forests and food: addressing hunger and nutrition across sustainable landscapes. Open Book Publishers, Cambridge

    Book  Google Scholar 

  • Wagner MR, Cobbinah JR, Bosu PP (2008) Forest entomology in West Tropical Africa: forest insects of Ghana. Springer, Dordrecht

    Book  Google Scholar 

  • Wingfied MJ, Slippers B, Roux J, Wingfield B (2001) Worldwide movement of exotic forest fungi, especially in the tropics and the southern hemisphere. Bioscience 51:134–140

    Article  Google Scholar 

  • Wingfied MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349:832–836

    Article  Google Scholar 

  • Wingfield MJ, Slippers B, Hurley BP, Coutinho TA, Wingfield BD, Roux J (2008) Eucalypt pests and diseases: growing threats to plantation productivity. Southern For 70:139–144

    Google Scholar 

  • Wingfield MJ, Roux J, Wingfield BD (2011) Insect pests and pathogens of Australian acacias grown as non-natives—an experiment in biogeography with far-reaching consequences. Divers Distrib 17:968–977

    Article  Google Scholar 

  • Wingfield MJ, Roux J, Slippers B, Hurley BP, Garnas J, Myburg AA, Wingfield BD (2013) Established and new technologies reduce increasing pest and pathogen threats to Eucalypt plantations. For Ecol Manage 301:35–42

    Article  Google Scholar 

  • Withers TM (2001) Colonization of eucalypts in New Zealand by Australian insects. Austral Ecol 26:467–476

    Article  Google Scholar 

Download references

Acknowledgements

Members of the Tree Protection Cooperative Programme (TPCP), the National Research Foundation (NRF) and the Department of Trade and Industry (DTI) of South Africa, are acknowledged for their financial support. We thank Donald Chungu (Copperbelt University, Zambia), Tembani Mduduzi (Forest Research Centre, Zimbabwe), Peter Kiwuso (Forest Research Institute, Uganda), Gerald Meke (FRIM, Malawi) and Eston Mutitu (KEFRI, Kenya) for providing information on the occurrence of insect pests in their respective countries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett P. Hurley.

Additional information

Guest Editors: Andrew Liebhold, Eckehard Brockerhoff and Martin Nuñez. Special issue on Biological Invasions in Forests prepared by a task force of the International Union of Forest Research Organizations (IUFRO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurley, B.P., Slippers, B., Sathyapala, S. et al. Challenges to planted forest health in developing economies. Biol Invasions 19, 3273–3285 (2017). https://doi.org/10.1007/s10530-017-1488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1488-z

Keywords

Navigation