Skip to main content

Ecology of invasive forest pathogens

Abstract

Invasive forest pathogens are a major threat to forests worldwide, causing increasing damage. The knowledge of both the specific traits underlying the capacity of a pathogen to become invasive, and the attributes predisposing an environment to invasion are to be thoroughly understood in order to deal with forest invasions. This paper summarizes the historical knowledge on this subject. Many aspects of the ecological processes underlying alien forest pathogens invasions are still unknown, which raises several scientific issues that need further study. The introduction of invasive forest pathogens to areas where naïve hosts are found, is mainly due to global plant trade. Rapid transportation and reduced delivery times increase the chances of survival of pathogen propagules and of their successful establishment in new environments. In forest pathogens, the reproduction mode seems not to be a crucial determinant of invasiveness, as highly destructive pathogens have a variety of reproductive strategies. The most important drivers of forest pathogen invasions appear to be (a) great adaptability to new environmental conditions; (b) efficient dispersal over long and short distances, possibly assisted by the capacity to form novel associations with endemic and/or alien insect vectors; (c) the ability to exchange genetic material or hybridize with resident or alien species. Moreover, these features interact with some key traits of the invaded environment, e.g. environmental variability and biodiversity richness. Host resistance and natural enemies may occur as a result of rapid selection/adaptation after the epidemic phase of invasion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adamson K, Klavina D, Drenkhan R, Gaitnieks T, Hanso M (2015) Diplodia sapinea is colonizing the native Scots pine (Pinus sylvestris) in the northern Baltics. Eur J Plant Pathol 143(2):343–350. doi:10.1007/s10658-015-0686-8

    Article  Google Scholar 

  2. Ali S, Leconte M, Walker AS, Enjalbert J, de Vallavieille-Pope C (2010) Reduction in the sex ability of worldwide clonal populations of Puccinia striiformis f.sp. Tritici. Fungal Genet Biol 47(10):828–838. doi:10.1016/j.fgb.2010.07.002

    PubMed  Article  Google Scholar 

  3. Anagnostakis SL (2012) Chestnut breeding in the United States for disease and insect resistance. Plant Dis 96:1392–1403. doi:10.1094/PDIS-04-12-0350-FE

    Article  Google Scholar 

  4. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544. doi:10.1016/j.tree.2004.07.021

    PubMed  Article  Google Scholar 

  5. Baird RE (1991) Growth and stromata production of hypovirulent and virulent strains of Cryphonectria parasitica on dead Quercus rubra and Acer rubrum. Mycologia 83:158–162

    Article  Google Scholar 

  6. Bandyopadhyay R, Frederiksen RA (1999) Contemporary global movement of emerging plant diseases. Ann N Y Acad Sci 894:28–36. doi:10.1111/j.1749-6632.1999.tb08040.x

    CAS  PubMed  Article  Google Scholar 

  7. Barrett LG, Thrall PH, Burdon JJ, Linde CC (2008) Life history determines genetic structure and evolutionary potential of host–parasite interactions. Trends Ecol Evol 23:678–685. doi:10.1016/j.tree.2008.06.017

    PubMed  PubMed Central  Article  Google Scholar 

  8. Battisti A, Roques A, Colombari F, Frigimelica G, Guido M (1999) Efficient transmission of an introduced pathogen via an ancient insect-fungus association. Naturwissenschaften 86:479–483

    CAS  PubMed  Article  Google Scholar 

  9. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148. doi:10.3389/fmicb.2014.00148

    PubMed  PubMed Central  Google Scholar 

  10. Bihon W, Slippers B, Burgess T, Wingfield MJ, Wingfield B (2011) Diplodia scrobiculata found in southern hemisphere. For Path 41:175–181. doi:10.1111/j.1439-0329.2010.00649.x

    Article  Google Scholar 

  11. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. doi:10.1016/j.tree.2011.03.023

    PubMed  Article  Google Scholar 

  12. Blodgett JT, Bonello P (2003) The aggressiveness of Sphaeropsis sapinea on Austrian pine varies with isolate group and site of infection. For Path 33:15–19. doi:10.1046/j.1439-0329.2003.00303.x

    Article  Google Scholar 

  13. Bradshaw CJA, Leroy B, Bellard C, Roiz D, Albert C, Fournier A, Barbet-Massin M, Salles J-M, Simard F, Courchamp F (2016) Massive yet grossly underestimated global costs of invasive insects. Nat Commun 7:12986. doi:10.1038/ncomms12986

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Brasier CM (1982) The future of Dutch elm disease in Europe. In: Burdekin DA (ed) Research on Dutch elm disease in Europe. Forestry Commission Bulletin vol 60, pp 96–104

  15. Brasier CM (1983) A cytoplasmically transmitted disease of Ceratocystis ulmi. Nature 305:220–223. doi:10.1038/305220a0

    Article  Google Scholar 

  16. Brasier CM (1988) Rapid changes in genetic structure of epidemic populations of Ophiostoma ulmi. Nature 332:538–541. doi:10.1038/332538a0

    Article  Google Scholar 

  17. Brasier CM (1990) China and the origins of Dutch elm disease: an appraisal. Plant Pathol 39:5–16. doi:10.1111/j.1365-3059.1990.tb02470.x

    Article  Google Scholar 

  18. Brasier CM (2000) The rise of the hybrid fungi. Nature 405:134–135. doi:10.1038/35012193

    CAS  PubMed  Article  Google Scholar 

  19. Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization. Bioscience 51:123–133. doi:10.1641/0006-3568(2001)051[0123:REOIPP]2.0.CO;2

    Article  Google Scholar 

  20. Brasier CM (2008) The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808. doi:10.1111/j.1365-3059.2008.01886.x

    Article  Google Scholar 

  21. Brasier CM, Gibbs JN (1973) Origin of the Dutch elm disease in Britain. Nature 242:607–609. doi:10.1038/242607a0

    Article  Google Scholar 

  22. Brasier CM, Kirk SA (2001) Designation of the EAN and NAN races of Ophiostoma novo-ulmi as subspecies. Mycol Res 105:547–554. doi:10.1017/S0953756201004087

    Article  Google Scholar 

  23. Brasier CM, Kirk SA (2010) Rapid emergence of hybrids between the two subspecies of Ophiostoma novo-ulmi with a high level of pathogenic fitness. Plant Pathol 59:186–199. doi:10.1111/j.1365-3059.2009.02157.x

    CAS  Article  Google Scholar 

  24. Brasier CM, Webber J (2010) Sudden larch death. Nature 466:824–825. doi:10.1038/466824a

    CAS  PubMed  Article  Google Scholar 

  25. Brasier CM, Cooke DEL, Duncan JM (1999) Origin of a new Phytophthora pathogen through interspecific hybridization. Proc Natl Acad Sci USA 96(10):5878–5883. doi:10.1073/pnas.96.10.5878

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Brasier CM, Buck K, Paoletti M, Crawford L, Kirk S (2004) Molecular analysis of evolutionary changes in population of Ophiostoma novo-ulmi. Invest Agrar Sist Recur For 13:93–103

    Google Scholar 

  27. Brown JK, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297(5581):537–541. doi:10.1126/science.1072678

    CAS  PubMed  Article  Google Scholar 

  28. Brownlie J, Peckham C, Waage J, Woolhouse M, Lyall C, Meagher L, Tait J, Baylis M, Nicoll A (2006) Infectious diseases: preparing for the future. In: Foresight report on the detection and identification of infectious diseases over the next 10–25 years. Future Threats. Government Office for Science and Innovation, London, UK. https://www.gov.uk/government/publications/infectious-diseases-preparing-for-the-future. Accessed 6 June 2017

  29. Buck KW, Brasier CM, Paoletti M, Crawford L (2002) Virus transmission and gene flow between two species of Dutch elm disease fungi, Ophiostoma ulmi and O. novo-ulmi: deleterious viruses as selective agents for gene introgression. In: Hails RS, Beringer JE, Godfrey HA (eds) Genes in the environment. Blackwells, Oxford, pp 26–45

    Google Scholar 

  30. Burgess T, Wingfield BD, Wingfield MJ (2001) Comparison of genotypic diversity in native and introduced populations of Sphaeropsis sapinea isolated from Pinus radiata. Mycol Res 105:1331–1339. doi:10.1017/S0953756201005056

    Article  Google Scholar 

  31. Burgess TI, Crous CJ, Slippers B, Wingfield MJ (2016) Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AoB Plants 8:plw076. doi:10.1093/aobpla/plw076

    PubMed  PubMed Central  Article  Google Scholar 

  32. Campbell FT, Schlarbaum SE (1994) Fading forests: North American trees and the threat of exotic pests. Natural Resources Defense Council, New York, p 47

    Google Scholar 

  33. Close RC, Moar NT, Tomlinson AI, Lowe AD (1978) Int J Biometeorol 22:1–19. doi:10.1007/BF01553136

    Article  Google Scholar 

  34. Cristinzio M, Marziano F, Vernau R (1973) La moria del platano in Campania. Riv Pat Veg 9:189–214

    Google Scholar 

  35. Dantec CF, Ducasse H, Capdevielle X, Fabreguettes O, Delzon S, Desprez-Loustau ML (2015) Escape of spring frost and disease through phenological variations in oak populations along elevation gradients. J Ecol 103:1044–1056. doi:10.1111/1365-2745.12403

    Article  Google Scholar 

  36. Danti R, Panconesi A, Di Lonardo V, Della Rocca G, Raddi P (2006) ‘Italico’ and ‘Mediterraneo’: two Seiridium cardinale canker-resistant cypress cultivars of Cupressus sempervirens. HortScience 41:1357–1359

    Google Scholar 

  37. Danti R, Della Rocca G, Panconesi A (2013a) Cypress canker. In: Nicolotti G, Gonthier P (eds) Infectious forest disease. CABI Press, Oxfordshire, pp 359–375

    Chapter  Google Scholar 

  38. Danti R, Di Lonardo V, Pecchioli A, Della Rocca G (2013b) ‘Le Crete 1’ and ‘Le Crete 2’: two newly patented Seiridium cardinale canker resistant cultivars of Cupressus sempervirens. For Path 43:204–210. doi:10.1111/efp.12016

    Article  Google Scholar 

  39. Davis RA, Valentine LE, Craig MD, Wilson B, Bancroft WJ, Mallie M (2014) Impact of Phytophthora-dieback on birds in Banksia woodlands in south west Western Australia. Biol Conserv 171:136–144. doi:10.1016/j.biocon.2014.01.027

    Article  Google Scholar 

  40. de Wet J, Wingfield MJ, Coutinho TA, Wingfield BD (2000) Characterization of Sphaeropsis sapinea isolates from South Africa, Mexico, and Indonesia. Plant Dis 84(2):151–156. doi:10.1094/PDIS.2000.84.2.151

    Article  Google Scholar 

  41. de Wet J, Burges T, Slippers B, Preisig O, Wingfield BD, Wingfield MJ (2003) Multiple gene genealogies and microsatellite markers reflect relationship between morphotypes of Sphaeropsis sapinea and distinguish a new species of Diplodia. Mycol Res 107:557–566. doi:10.1017/S0953756203007706

    PubMed  Article  CAS  Google Scholar 

  42. Della Rocca G, Eyre CA, Danti R, Garbelotto M (2011) SSR and sequence analyses of the fungal pathogen Seiridium cardinale indicate California is the source of the cypress canker epidemic for the Mediterranean region. Phytopathology 101:1408–1417. doi:10.1094/PHYTO-05-11-0144

    CAS  PubMed  Article  Google Scholar 

  43. Della Rocca G, Osmundson T, Danti R, Pecchioli A, Donnarumma F, Casalone E, Garbelotto M (2013) AFLP analysis of California and Mediterranean populations of Seiridium cardinale provide insights on its origin, biology and spread pathways. For Path 3:211–221. doi:10.1111/efp.12019

    Article  Google Scholar 

  44. Depotter JRL, Seidl MF, Woods TA, Thomma BPHJ (2016) Interspecific hybridization impacts host range and pathogenicity of filamentous microbes. Curr Opin Microbiol 32:7–13. doi:10.1016/j.mib.2016.04.005

    CAS  PubMed  Article  Google Scholar 

  45. Desprez-Loustau M-L, Robin C, Buee M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo DM (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22(9):472–480. doi:10.1016/j.tree.2007.04.005

    PubMed  Article  Google Scholar 

  46. Desprez-Loustau M-L, Courtecuisse R, Robin C, Husson C, Moreau P-A, Blancard D, Selosse M-A, Lung-Escarmant B, Piou D, Sache I (2010) Species diversity and drivers of spread of alien fungi (sensu lato) in Europe with a particular focus on France. Biol Invas 12:157–172. doi:10.1007/s10530-009-9439-y

    Article  Google Scholar 

  47. Desprez-Loustau M-L, Aguayo J, Dutech C, Hayden KJ, Husson C, Jakushkin B, Marçais B, Piou D, Robin C, Vacher C (2016) An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Ann For Sci 73:45–67. doi:10.1007/s13595-015-0487-4

    Article  Google Scholar 

  48. Dhillon B, Feau N, Aerts AL, Beauseigle S, Bernier L, Alex Copeland A, Foster A, Gill N, Henrissat B, Herath P, LaButti KM, Levasseur A, Lindquist EA, Majoor E, Ohm RA, Pangilinan JL, Pribowo A, Saddler JN, Sakalidis ML, de Vries RP, Grigoriev IV, Goodwin SB, Tanguay P, Hamelin RC (2015) Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen. PNAS 112(11):3451–3456. doi:10.1073/pnas.1424293112

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Dunn AM, Hatcher MJ (2015) Parasites and biological invasions: parallels, interactions, and control. Trends Parasitol 35:189–199. doi:10.1016/j.pt.2014.12.003

    Article  Google Scholar 

  50. Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, Gonzalez P, Grosholz ED, Ibanez I, Miller LP, Sorte CJB, Tatem AJ (2016) Global threats from invasive alien species in the twenty-first century and national response capacities. Nat Commun. doi:10.1038/ncomms12485

    PubMed  PubMed Central  Google Scholar 

  51. Eastburn DM, McElrone AJ, Bilgin DD (2011) Influence of atmospheric and climatic change on plant-pathogen interactions. Plant Pathol 60(1):54–69. doi:10.1111/j.1365-3059.2010.02402.x

    Article  Google Scholar 

  52. Elliott KJ, Swank WT (2008) Long-term changes in forest composition and diversity following early logging (1919–1923) and the decline of American chestnut (Castanea dentata). Plant Ecol 197:155–172. doi:10.1007/s11258-007-9352-3

    Article  Google Scholar 

  53. Engelbrecht CJB, Harrington TC, Steimel J, Capretti P (2004) Genetic variation in eastern North American and putatively introduced populations of Ceratocystis fimbriata f. platani. Mol Ecol 13:2995–3005. doi:10.1111/j.1365-294X.2004.02312.x

    CAS  PubMed  Article  Google Scholar 

  54. Environment Canada (2004) An invasive alien species strategy for Canada. Ottawa, Canada. http://publications.gc.ca/collections/collection_2014/ec/CW66-394-2004-eng.pdf Accessed 6 June 2017

  55. EPPO (2014) Diagnostics, phytosanitary measures PM 7/14 (2): Ceratocystis platani. Bull OEPP/EPPO Bull 44:338–349

    Article  Google Scholar 

  56. Eschen R, Britton K, Brockerhoff E, Burgess T, Dalley V, Epanchin-Niell RS, Gupta K, Hardy G, Huang Y, Kenis M, Kimani E, Li H-M, Olsen S, Ormrod R, Otieno W, Sadof C, Tadeu E, Theyse M (2015) International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ Sci Policy 51:228–237. doi:10.1016/j.envsci.2015.04.021

    Article  Google Scholar 

  57. Evangelista PH, Kumar S, Stohlgren TJ, Jarnevich CS, Crall AW, Normann JB III, Barnett DT (2008) Modelling invasion for a habitat generalist and a specialist plant species. Divers Distrib 14:808–817. doi:10.1111/j.1472-4642.2008.00486.x

    Article  Google Scholar 

  58. Fabre B, Piou D, Desprez-Loustau M-L, Marcais B (2011) Can the emergence of pine Diplodia shoot blight in France be explained by changes in pathogen pressure linked to climate change? Global Change Biol 17:3218–3227. doi:10.1111/j.1365-2486.2011.02428.x

    Article  Google Scholar 

  59. Fent M, Kment P (2011) First record of the invasive western conifer seed bug Leptoglossus occidentalis (Heteroptera: Coreidae) in Turkey. NorthWest J Zool 7(1):72–80

    Google Scholar 

  60. Fisher MC, Henk AD, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plants and ecosystems. Nature 484:186–194. doi:10.1038/nature10947

    CAS  PubMed  Article  Google Scholar 

  61. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  62. Fransen JJ, Buisman C (1935) Infectieproven op verschillende iepensoorten met behulp van iepen spinkevers. Tidjscfrift over plantenziekten 41:221–239

    Google Scholar 

  63. Garbelotto M, Gonthier P (2013) Biology, epidemiology, and control of heterobasidion species worldwide. Annu Rev Phytohol 51:39–59. doi:10.1146/annurev-phyto-082712-102225

    CAS  Article  Google Scholar 

  64. Garbelotto M, Della Rocca G, Osmundson T, di Lonardo V, Danti R (2015) An increase in transmission-related traits and in phenotypic plasticity is documented during a fungal invasion. Ecosphere 6(19):1–16. doi:10.1890/ES14-00426.1

    Google Scholar 

  65. Garcia-Guzman G, Heil M (2014) Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytol 201:1106–1120. doi:10.1111/nph.12562

    CAS  PubMed  Article  Google Scholar 

  66. Ghelardini L (2007) Bud burst phenology, dormancy release and susceptibility to Dutch elm disease in elms (Ulmus spp.). Doctoral thesis, Uppsala, Sveriges lantbruksuniversitet, Acta Universitatis agriculturae Sueciae, 1652-6880; 2007:134, ISBN 978-91-85913-33-6, http://pub.epsilon.slu.se/1671/ Accesses 06 June 2017

  67. Ghelardini L, Santini A (2009) Avoidance by early flushing: a new perspective on Dutch elm disease research. iforest 2:143–153. doi:10.3832/ifor0508-002

    Article  Google Scholar 

  68. Ghelardini L, Pepori AL, Luchi N, Capretti P, Santini A (2016) Drivers of emerging fungal diseases of forest trees. For Ecol Manag 381:235–246. doi:10.1016/j.foreco.2016.09.032

    Article  Google Scholar 

  69. Giau B (1999) La valutazione del paesaggio forestale. Agribusiness Paesaggio ed Ambiente 3:137–144

    Google Scholar 

  70. Gibbs JN (1978) Intercontinental epidemiology of Dutch elm disease. Annu Rev Phytopath 16:287–307. doi:10.1146/annurev.py.16.090178.001443

    Article  Google Scholar 

  71. Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen–host range. Proc Natl Acad Sci USA 104:4979–4983. doi:10.1073/pnas.0607968104

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Giraud T, Gladieux P, Gavrilets S (2010) Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol Evol 25:387–395. doi:10.1016/j.tree.2010.03.006

    PubMed  PubMed Central  Article  Google Scholar 

  73. Gladieux P, Guérin F, Giraud T, Caffier V, Lemaire C, Parisi L, Didelot F, Le Cam B (2011) Emergence of novel fungal pathogens by ecological speciation: importance of the reduced viability of immigrants. Mol Ecol 20:4521–4532. doi:10.1111/j.1365-294X.2011.05288.x

    PubMed  Article  Google Scholar 

  74. Gladieux P, Feurtey A, Hood ME, Snirc A, Clavels J, Dutech C, Roy M, Giraud T (2015) The population biology of fungal invasions. Mol Ecol 24:1969–1986. doi:10.1111/mec.13028

    CAS  PubMed  Article  Google Scholar 

  75. Gluck-Thaler E, Jason C, Slot JC (2015) Dimensions of horizontal gene transfer in eukaryotic microbial pathogens. PLoS Pathog 11(10):e1005156. doi:10.1371/journal.ppat.1005156

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. Graniti A (1998) Cypress canker: a pandemic in progress. Annu Rev Phytopathol 36:91–114. doi:10.1146/annurev.phyto.36.1.91

    CAS  PubMed  Article  Google Scholar 

  77. Grente J (1965) Les formes Hypovirulentes d’Endothia parasitica et les espoirs de lutte contre le chancre du chataignier. Académie d’Agriculture de France, Extrait du Proces-verbal de la Séance 51:1033–1037

    Google Scholar 

  78. Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170. doi:10.1146/annurev-genom-090711-163814

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Gross A, Holdenrieder O, Pautasso M, Queloz V, Sieber TN (2014) Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol Plant Pathol 15(1):5–21. doi:10.1111/mpp.12073

    CAS  PubMed  Article  Google Scholar 

  80. Haight RG, Homans FR, Horie T, Mehta SV, Smith DJ, Venette RC (2011) Assessing the cost of an invasive forest pathogen: a case study with oak wilt. Environ Manag 47:506–517. doi:10.1007/s00267-011-9624-5

    Article  Google Scholar 

  81. Hanso M, Drenkhan R (2009) Diplodia pinea is a new pathogen on Austrian pine (Pinus nigra) in Estonia. Plant Pathol 58(4):797. doi:10.1111/j.1365-3059.2009.02082.x

    Article  Google Scholar 

  82. Heard SB, Stireman JO 3rd, Nason JD, Cox GH, Kolacz CR, Brown JM (2006) On the elusiveness of enemy-free space: spatial, temporal, and host-plant-related variation in parasitoid attack rates on three gallmakers of goldenrods. Oecologia 150:421–434. doi:10.1007/s00442-006-0529-6

    PubMed  Article  Google Scholar 

  83. Holmes JC (1979) Parasite populations and host community structure. Academic Press, New York

    Google Scholar 

  84. Hui C, Richardson DM, Landi P, Minoarivelo HO, Garnas J, Roy HE (2016) Defining invasiveness and invasibility in ecological networks. Biol Invasions 18(4):971–983. doi:10.1007/s10530-016-1076-7

    Article  Google Scholar 

  85. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18. doi:10.1111/j.1365-2664.2008.01600.x

    Article  Google Scholar 

  86. Hummer KE (2000) History of the origin and dispersal of white pine blister rust. HortTechnology 10:515–517

    Google Scholar 

  87. Jones DR, Baker RHA (2007) Introductions of non native plant pathogens into Great Britain, 1970-2004. Plant Pathol 56:891–910. doi:10.1111/j.1365-3059.2007.01619.x

    Article  Google Scholar 

  88. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi:10.1038/nature05286

    CAS  PubMed  Article  Google Scholar 

  89. Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evolut Biol 15:173–190. doi:10.1046/j.1420-9101.2002.00377.x

    Article  Google Scholar 

  90. Klapwijk MJ, Hopkins AJM, Eriksson L, Pettersson M, Martin Schroeder M, Lindelöw Å, Rönnberg J, Keskitalo ECH, Kenis M (2016) Reducing the risk of invasive forest pests and pathogens: combining legislation, targeted management and public awareness. Ambio 45(Suppl 2):223. doi:10.1007/s13280-015-0748-3

    PubMed  PubMed Central  Article  Google Scholar 

  91. Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For Path 36(4):264–270. doi:10.1111/j.1439-0329.2006.00453.x

    Article  Google Scholar 

  92. Kräutler K, Kirisits T (2012) The ash dieback pathogen Hymenoscyphus pseudoalbidus is associated with leaf symptoms on ash species (Fraxinus spp.). J Agric Ext Rural Dev 4:261–265. doi:10.5897/JAERD12.065

    Google Scholar 

  93. Leppik EE (1970) Gene centers of plants as sources of disease resistance. Annu Rev Phytopathol 8:323–344. doi:10.1146/annurev.py.08.090170.001543

    Article  Google Scholar 

  94. Lesieur V, Yart A, Guilbon S, Lorme P, Auger-Rozenberg M-A, Roques A (2014) The invasive Leptoglossus seed bug, a threat for commercial seed crops, but for conifer diversity? Biol Inv. doi:10.1007/s10530-013-0630-9

    Google Scholar 

  95. Li X, Liu X, Kraus F, Tingley R, Li Y (2016) Risk of biological invasions is concentrated in biodiversity hotspots. Front Ecol Environ 14(8):411–417. doi:10.1002/fee.1321

    Article  Google Scholar 

  96. Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ 10:135–143. doi:10.1890/110198

    Article  Google Scholar 

  97. Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (2004) Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Netherlands. doi:10.1007/978-1-4020-2241-8

    Book  Google Scholar 

  98. Linaldeddu BT, Scanu B, Franceschini A (2010) First report of Diplodia scrobiculata causing canker and branch dieback on strawberry Tree (Arbutus unedo) in Italy. Plant Dis 94(7):919. doi:10.1094/PDIS-94-7-0919C

    Article  Google Scholar 

  99. Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Inv 8:1535–1545. doi:10.1007/s10530-005-5845-y

    Article  Google Scholar 

  100. Loo J (2009) Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Inv 11:81–96. doi:10.1007/s10530-008-9321-3

    Article  Google Scholar 

  101. Lovett GM, Canham CD, Arthur MA, Weathers KC, Fitzhugh RD (2006) Forest ecosystem responses to exotic pests and pathogens in eastern North America. Bioscience 56:395–405. doi:10.1641/0006-3568(2006)056[0395:FERTEP]2.0.CO;2

    Article  Google Scholar 

  102. Lovett GM, Arthur MA, Weathers KC, Griffin JM (2010) Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems 13:1188–1200. doi:10.1007/s10021-010-9381-y

    CAS  Article  Google Scholar 

  103. Lovett GM, Weiss M, Liebhold AM, Holmes TP, Leung B, Lambert KF, Orwig DA, Campbell FT, Rosenth J, McCulloug DG, Wildova R, Ayres MP, Canham CD, Foster DR, LaDeau SL, Weldy T (2016) Nonnative forest insects and pathogens in the United States: impacts and policy options. Ecol Appl 26:1437–1455. doi:10.1890/15-1176

    PubMed  Article  Google Scholar 

  104. Luchi N, Capretti P, Bonello P (2007) Production of Diplodia scrobiculata and D. pinea pycnidia on ground Austrian pine needle agar medium. Phytopathol Mediterr 46:230–235. doi:10.14601/Phytopathol_Mediterr-2157

    Google Scholar 

  105. Luchi N, Mancini V, Feducci M, Santini A, Capretti P (2012) Leptoglossus occidentalis and Diplodia pinea: a new insect-fungus association in Mediterranean forests. For Pathol 42:246–251. doi:10.1111/j.1439-0329.2011.00750.x

    Article  Google Scholar 

  106. Luchi N, Ghelardini L, Belbahri L, Quartier M, Santini A (2013) Rapid detection of Ceratocystis platani inoculum by quantitative real-time PCR assay. Appl Environ Microbiol 79:5394–5404. doi:10.1128/AEM.01484-13

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Luchi N, Oliveira Longa CM, Danti R, Capretti P, Maresi G (2014) Diplodia sapinea: the main fungal species involved in the colonization of pine shoots in Italy. For Path 44:372–381. doi:10.1111/efp.12109

    Article  Google Scholar 

  108. Lugo AE (2015) Forestry in the anthropocene. Science 349(6250):771. doi:10.1126/science.aad2208

    CAS  PubMed  Article  Google Scholar 

  109. McDonald GI, Richardson BA, Zambino PJ, Klopfenstein NB, Kim M-S (2006) Pedicularis and Castilleja are natural hosts of Cronartium ribicola in North America: a first report. For Pathol 36:73–82. doi:10.1111/j.1439-0329.2006.00432.x

    Article  Google Scholar 

  110. Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos J, Moore K, Yokomizo H (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94. doi:10.1111/j.1461-0248.2006.00987.x

    PubMed  Article  Google Scholar 

  111. Misra BB, Chaturvedi R (2015) When plants brace for the emerging pathogens. Physiol Mol Plant Pathol 92:181–185. doi:10.1016/j.pmpp.2015.03.004

    Article  Google Scholar 

  112. Morrison WE, Hay ME (2011) Herbivore preference for native vs exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve. PLoS ONE 6:e17227. doi:10.1371/journal.pone.0017227

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. Morse BA (2005) Alien invasive species: impacts on forests and forestry. A review. Forest Health and Biosecurity Working Paper 8. Forest Resources Development Service Working Paper FBS/8E. Forest Resources Division FAO, Rome, Italy, Forestry Department

  114. Nieuwenhuis BP, Aanen DK (2012) Sexual selection in fungi. J Evol Biol 25:2397–2411. doi:10.1111/jeb.12017

    CAS  PubMed  Article  Google Scholar 

  115. Notaro S, Raffaelli R, Gios G (2005) Una valutazione economica del valore paesaggistico del cipresso (Cupressus sempervirens) nell’Alto Garda. Riv Economia Agraria 60(3):603–626

    Google Scholar 

  116. O’Donnell J, Gallagher RV, Wilson PD, Downey PO, Hughes L, Leishman MR (2012) Invasion hot-spots for non-native plants in Australia under current and future climates. Global Change Biol 18:617–629. doi:10.1111/j.1365-2486.2011.02537.x

    Article  Google Scholar 

  117. Ocasio-Morales RG, Tsopelas P, Harrington TC (2007) Origin of Ceratocystis platani on native Platanus orientalis in Greece and its impact on natural forests. Plant Dis 91:901–904. doi:10.1094/PDIS-91-7-0901

    Article  Google Scholar 

  118. Oliva J, Boberg J, Stenlid J (2013) First report of Sphaeropsis sapinea on Scots pine (Pinus sylvestris) and Austrian pine (P. nigra) in Sweden. New Dis Rep 27:23. doi:10.5197/j.2044-0588.2013.027.023

    Article  Google Scholar 

  119. Panconesi A (1990) Pathological disorders in the Mediterranean basin. In: Agriculture-AGRIMED Research Programme: progress in EEC Research on Cypress Diseases. Rep. EUR 12493 EN. Ponchet J (ed). Commission of the European Communities, Brussels, pp 54–81

  120. Panconesi A (1999) Canker stain of plane tree: a serious danger to urban plantings in Europe. J Plant Pathol 81:3–15. doi:10.4454/jpp.v81i1.1041

    Google Scholar 

  121. Paoletti M, Buck KW, Brasier CM (2006) Selective acquisition of novel mating type and vegetative incompatibility genes via interspecies gene transfer in the globally invading eukaryote Ophiostoma novo-ulmi. Mol Ecol 14:249–263. doi:10.1111/j.1365-294X.2005.02728.x

    Google Scholar 

  122. Parker IM, Gilbert GS (2007) When there is no escape: the effects of natural enemies on native, invasive, and non invasive plants. Ecology 88:1210–1224. doi:10.1890/06-1377

    PubMed  Article  Google Scholar 

  123. Philibert A, Desprez-Loustau M-L, Fabre B, Frey P, Halkett F, Husson C, Lung-Escarmant B, Marçais B, Robin C, Vacher C, Makowski D (2011) Predicting invasion success of forest pathogenic fungi from species traits. J Appl Ecol 48:1381–1390. doi:10.1111/j.1365-2664.2011.02039.x

    Article  Google Scholar 

  124. Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367. doi:10.1242/jeb.02070

    PubMed  Article  Google Scholar 

  125. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50(1):53–65. doi:10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2

    Article  Google Scholar 

  126. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal and microbe invasions. Agric Ecosyst Environ 84(1):1–20. doi:10.1016/S0167-8809(00)00178-X

    Article  Google Scholar 

  127. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien invasive species in the United States. Ecol Econ 52(3):273–288. doi:10.1016/j.ecolecon.2004.10.002

    Article  Google Scholar 

  128. Poulin R (2011) Evolutionary ecology of parasites, 2nd edn. Princeton University Press Princeton, Princeton. ISBN 9781400840809

    Book  Google Scholar 

  129. Prospero S, Cleary M (2017) Effects of host variability on the spread of invasive forest diseases. Forests 8:80. doi:10.3390/f8030080

    Article  Google Scholar 

  130. Prospero S, Conedera M, Heiniger U, Rigling D (2006) Saprophytic activity and sporulation of Cryphonectria parasitica on dead chestnut wood in forests with naturally established hypovirulence. Phytopathology 96(12):1337–1344. doi:10.1094/PHYTO-96-1337

    CAS  PubMed  Article  Google Scholar 

  131. Real LA, Biek R (2007) Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes. J R Soc Interface 4(16):935–948. doi:10.1098/rsif.2007.1041

    PubMed  PubMed Central  Article  Google Scholar 

  132. Richardson DM, Pysek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geog 30(3):409–431. doi:10.1191/0309133306pp490pr

    Article  Google Scholar 

  133. Rigling D, Prospero S (2017) Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol Plant Pathol. doi:10.1111/mpp.12542

    PubMed  Google Scholar 

  134. Roversi PF, Strong WB, Caleca V, Maltese M, Peverieri GS, Marianelli L, Marziali L, Strangi A (2011) Introduction into Italy of Gryon pennsylvanicum (Ashmead), an egg parasitoid of the alien invasive bug Leptoglossus occidentalis Heidemann. EPPO Bull 41(1):72–75. doi:10.1111/j.1365-2338.2011.02439.x

    Article  Google Scholar 

  135. Roy BA, Alexander HM, Davidson J, Campbell FT, Burdon JJ, Sniezko R, Brasier CM (2014) Increasing forest loss worldwide from invasive pests requires new trade regulations. Front Ecol Environ 12:457–465. doi:10.1890/130240

    Article  Google Scholar 

  136. Roy HE, Hesketh H, Purse BV, Eilenberg J, Santini A, Scalera R, Stentiford GD, Adriaens T, Bacela-Spychalska K, Bass D, Beckmann KM, Bessell P, Bojko J, Booy O, Cardoso AC, Essl F, Groom Q, Harrower C, Kleespies R, Martinou AF, van Oers MM, Peeler EJ, Pergl J, Rabitsch W, Roques A, Schaffner F, Schindler S, Schmidt BR, Schönrogge K, Smith J, Solarz W, Stewart A, Stroo A, Tricarico E, Turvey KMA, Vannini A, Vilà M, Woodward S, Wynns AA, Dunn AM (2016) Alien pathogens on the horizon: opportunities for predicting their threat to wildlife. Conserv Lett. doi:10.1111/conl.12297

    Google Scholar 

  137. Sache I, Roy AS, Suffert F, Desprez-Loustau ML (2011) Invasive plant pathogens in Europe. In: Pimentel D (ed) Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, 2nd edn. CRC Press-Taylor and Francis Group, Boca Raton. doi:10.1201/b10938

    Google Scholar 

  138. Salari AN, Arefipoor MR, Jami F, Zahedi M, Mehrabi A, Zeinali S (2006) First report of Ceratocystis fimbriata f. sp. platani causal agent of canker stain of sycamore trees in Iran. In: Proceedings of the 17th Iranian Plant Protection Congress, 2–5 Sept. 2006, University of Tehran Karaj, Iran, p 41

  139. Santini A, Capretti P (2000) Analysis of the Italian population of Ceratocystis fimbriata f. sp. platani using RAPD and minisatellite markers. Plant Pathol 49:461–467. doi:10.1046/j.1365-3059.2000.00470.x

    CAS  Article  Google Scholar 

  140. Santini A, Di Lonardo V (2000) Genetic variability of the ‘bark canker resistance’ character in several natural provenances of Cupressus sempervirens. For Path 30:87–96. doi:10.1046/j.1439-0329.2000.00188.x

    Article  Google Scholar 

  141. Santini A, Faccoli M (2015) Dutch elm disease and elm bark beetles: a century of association. iforest 8:126–134. doi:10.3832/ifor1231-008

    Article  Google Scholar 

  142. Santini A, Fagnani A, Ferrini F, Ghelardini L, Mittempergher L (2005) Variation among Italian and French elm clones in their response to Ophiostoma novo-ulmi inoculation. For Pathol 35:183–193. doi:10.1111/j.1439-0329.2005.00401.x

    Article  Google Scholar 

  143. Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula J, Holdenrieder O, Jankovsky L, Jung T, Jurc D, Kirisits T, Kunca A, Lygis V, Malecka M, Marcais B, Schmitz S, Schumacher J, Solheim H, Solla A, Szabò I, Tsopelas P, Vannini A, Vettraino AM, Webber J, Woodward S, Stenlid J (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250. doi:10.1111/j.1469-8137.2012.04364.x

    CAS  PubMed  Article  Google Scholar 

  144. Scherm H, Coakley SM (2003) Plant pathogens in a changing world. Austr Plant Pathol 32:157–165. doi:10.1071/AP03015

    Article  Google Scholar 

  145. Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16:117–125. doi:10.1016/j.tplants.2011.01.001

    CAS  PubMed  Article  Google Scholar 

  146. Simonian SA, Mamikonyan TO (1982) Disease of plane tree. Zashchita-Rastenii 8:23–24

    Google Scholar 

  147. Slippers B, Stenlid J, Wingfield MJ (2005) Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends Ecol Evol 20:420–421. doi:10.1016/j.tree.2005.05.002

    PubMed  Article  Google Scholar 

  148. Solla A, Martin JA, Corral P, Gil L (2005) Seasonal changes in wood formation of Ulmus pumila and U-minor and its relation with Dutch elm disease. New Phytol 166(3):1025–1034. doi:10.1111/j.1469-8137.2005.01384.x

    CAS  PubMed  Article  Google Scholar 

  149. Stanosz GR, Smith DR, Gutmiller MA (1996) Characterization of Sphaeropsis sapinea from the west central United States by means of random amplified polymorphic DNA marker analysis. Plant Dis 80:1175–1178

    CAS  Article  Google Scholar 

  150. Stanosz GR, Swart WJ, Smith DR (1999) RAPD marker and isozyme characterization of Sphaeropsis sapinea from diverse coniferous hosts and locations. Mycol Res 103:1193–1202. doi:10.1017/S0953756299008382

    CAS  Article  Google Scholar 

  151. Stanosz GR, Blodgett JT, Smith DR, Kruger EL (2001) Water stress and Sphaeropsis sapinea as a latent pathogen of red pine seedlings. New Phythol 149:531–538. doi:10.1046/j.1469-8137.2001.00052.x

    Article  Google Scholar 

  152. Stellin G, Rosato P (1998) La valutazione economica dei beni ambientali. Metodologia e casi di studio. UTET, Torino

    Google Scholar 

  153. Stukenbrock EH (2016) Hybridization speeds up the emergence and evolution of a new pathogen species. Nat Genet 48(2):113–115. doi:10.1038/ng.3494

    CAS  PubMed  Article  Google Scholar 

  154. Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98(3):1095–1100. doi:10.1073/pnas.98.3.1095

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. Swei A, Ostfeld RS, Lane RS, Briggs CJ (2011) Effects of an invasive forest pathogen on abundance of ticks and their vertebrate hosts in a California Lyme disease focus. Oecologia 166:91–100. doi:10.1007/s00442-010-1796-9

    PubMed  Article  Google Scholar 

  156. Tamburini M, Maresi G, Salvadori C, Battisti A, Zottele F, Pedrazzoli F (2012) Adaptation of the invasive western conifer seed bug Leptoglossus occidentalis to Trentino, an alpine region (Italy). Bull Insectol 65(2):161–170

    Google Scholar 

  157. Taylor SJ, Tescari G, Villa M (2001) A nearctic pest of Pinaceae accidentally introduced into Europe: Leptoglossus occidentalis (Heteroptera: Coreidae) in northern Italy. Entomol News 112(2):101–103

    Google Scholar 

  158. Tempesta T (1997) Paesaggio rurale ed agro-tecnologie innovative: una ricerca nella pianura tra Tagliamento ed Isonzo. Franco Angeli, Milano, Italy

  159. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273. doi:10.1111/j.1469-8137.2007.02207.x

    PubMed  Article  Google Scholar 

  160. Thompson JN (1998) Rapid evolution as an ecological process. Trends Ecol Evol 13:329–332. doi:10.1016/S0169-5347(98)01378-0

    CAS  PubMed  Article  Google Scholar 

  161. Tsopelas P, Soulioti N (2011) New records on the spread of canker stain disease in natural ecosystems of oriental plane in Peloponnese and Epirus, Greece. In Proceedings of the 15th National Forestry Congress, October 16-19 Karditsa, Greece (in Greek, with English summary) pp 350–359

  162. Tsopelas P, Soulioti N (2014) Invasion of the fungus Ceratocystis platani in Epirus: a potential threat of an environmental disaster in the natural ecosystems of plane trees. Phytopathol Mediterr 53:340–376. doi:10.14601/Phytopathol_Mediterr-14192

    Google Scholar 

  163. Tsopelas P, Palavouzis S, Tzima AK, Tsopelas MA, Soulioti N, Paplomatas EJ (2015) First report of Ceratocystis platani in Albania. For Path 45:433–436. doi:10.1111/efp.12219

    Article  Google Scholar 

  164. Tsopelas P, Santini A, Wingfield MJ, DeBeer ZW (2017) Canker stain: a lethal disease destroying iconic plane trees. Plant Dis 101(5):645–658. doi:10.1094/PDIS-09-16-1235-FE

    Article  Google Scholar 

  165. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209. doi:10.1186/gb-2013-14-6-209

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  166. Vacher C, Daudin J-J, Piou D, Marie-Laure Desprez-Loustau M-L (2010) Ecological integration of alien species into a tree-parasitic fungus network. Biol Inv 12:3249–3259. doi:10.1007/s10530-010-9719-6

    Article  Google Scholar 

  167. Vigouroux A (2013) Le chancre colore du platane: Description et methodes de lutte, fiche de synthese. Plante & Cité, Center for landscape and urban horticulture, http://www.plante-et-cite.fr/data/fichiers_ressources/pdf_fiches/synthese/2013_10_02_chancre_colore_platane.pdf (last accessed 2016-06-08)

  168. Vigouroux A, Stojadinovic B (1990) Possibilité d’infection du platane par Ceratocystis fimbriata f. platani après contamination de l’eau où se développent des racines blessées. Eur J For Path 20:118–121. doi:10.1111/j.1439-0329.1990.tb01280.x

    Article  Google Scholar 

  169. Wagener WW (1939) The canker of Cupressus induced by Coryneum cardinale n. sp. J Agric Res 58(1):1–47

    Google Scholar 

  170. Walter JM, Rex EG, Schreiber R (1952) The rate of progress and destructiveness of canker stain of plane-trees. Phytopathology 42:236–239

    Google Scholar 

  171. Webber JF (2004) Experimental studies on factors influencing the transmission of Dutch elm disease. Sistemas y Recursos Forestales 13:197–205. doi:10.5424/824

    Google Scholar 

  172. Webber JF, Brasier CM (1984) The transmission of Dutch elm disease: a study of the processes involved. In: Anderson JM, Rayner ADM, Walton D (eds) Invertebrate-microbial interactions. Cambridge University Press, Cambridge, pp 271–306

    Google Scholar 

  173. Webber JF, Brasier CM, Mitchell AG (1987) The role of the saprophytic phase in Dutch elm disease. In: Pegg GF, Ayres PG (eds) Fungal infection of plants: symposium of the British Mycological Society. Cambridge University Press, Cambridge, pp 298–313

    Google Scholar 

  174. Wingfield MJ, Garnas JR, Hajek A, Hurley BP, Wilhelm de Beer Z, Taerum SJ (2016) Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol Inv 18(4):1045–1056. doi:10.1007/s10530-016-1084-7

    Article  Google Scholar 

  175. Wingfield MJ, Slippers B, Wingfield BD, Barnes I (2017a) The unified framework for biological invasions: a forest fungal pathogen perspective. Biol Inv. doi:10.1007/s10530-017-1450-0

    Google Scholar 

  176. Wingfield MJ, Barnes I, de Beer ZW, Roux J, Wingfield BD, Taerum SJ (2017b) Novel associations between ophiostomatoid fungi, insects and tree hosts: current status—future prospects. Biol Inv. doi:10.1007/s10530-017-1468-3

    Google Scholar 

  177. Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am Nat 160(6):705–711. doi:10.1086/343872

    PubMed  Google Scholar 

  178. Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41(3):496–506. doi:10.2307/3544109

    Article  Google Scholar 

  179. Xenopoulos S, Diamandis S (1985) A distribution map for Seiridium cardinale causing the cypress canker in Greece. Eur J For Pathol 15:223–226. doi:10.1111/j.1439-0329.1985.tb00889.x

    Article  Google Scholar 

  180. Xu H, Qiang S, Han Z, Guo J, Huang Z, Sun H, He S, Ding H, Wu H, Wan F (2006a) The status and causes of alien species invasion in China. Biodivers Conserv 15(9):2893–2904. doi:10.1007/s10531-005-2575-5

    Article  Google Scholar 

  181. Xu RD, Dickie IA, Wingfield MJ, Hirsch H, Crous CJ, Meyerson LA, Burgess TI, Zimmermann TG, Klock MM, Siemann E, Erfmeier A, Aragon R, Montti L, Le Roux JJ (2006b) Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions. AoB Plants 8:plw085. doi:10.1093/aobpla/plw085

    Google Scholar 

  182. Xu H, Qiang S, Genovesi P, Ding H, Wu J, Meng L, Han Z, Miao J, Hu B, Guo J, Sun H, Huang C, Lei J, Le Z, Zhang X, He S, Wu Y, Zheng Z, Chen L, Jarošík V, Pyšek P (2012) An inventory of invasive alien species in China. NeoBiota 15:1–26. doi:10.3897/neobiota.15.3575

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers and the editors for their helpful comments and revision of the manuscript. Dr. Lorenzo Bonosi is warmly acknowledged for revising the manuscript. The International Union of Forest Research Organisations, Task Force on Biological Invasions in Forests, and The Organisation for Economic Co-operation and Development (OECD) are acknowledged for financial support. Funding was provided by OECD (Grant No. TAD/CRP JA87649).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alberto Santini.

Additional information

Guest Editors: Andrew Liebhold, Eckehard Brockerhoff and Martin Nun˜ez / Special issue on Biological Invasions in Forests prepared by a task force of the International Union of Forest Research Organizations (IUFRO).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghelardini, L., Luchi, N., Pecori, F. et al. Ecology of invasive forest pathogens. Biol Invasions 19, 3183–3200 (2017). https://doi.org/10.1007/s10530-017-1487-0

Download citation

Keywords

  • Disease spread
  • Economic impact
  • Invasibility
  • Invasion pathways
  • Invasiveness
  • Novel insect-fungus associations
  • Pathogen hybridization