Skip to main content

Breeding trees resistant to insects and diseases: putting theory into application

Abstract

Tree species world-wide are under increasing threat from diseases and insects, many of which are non-native. The integrity of our natural, urban and plantation forest ecosystems, and the services they provide are seriously imperiled. Breeding programs that harness the natural genetic resistance within tree species can provide a durable solution to these threats. In many cases, genetic resistance offers the key to restoration of forests and may even prevent extinction of some tree species. The potential use of genetic resistance is often widely discussed, but the development of applied programs and use of resistant seed has only taken place in a relatively few species. The reflections here from some of the most advanced applied resistance programs, as well as some of the unknowns and limitations of implementing a resistance program will provide a guide to managers considering this approach. In any such program, there is a research component, a tree improvement component and a restoration and reforestation component. These three components, along with sustained management and public support, need to be linked for any genetic resistance program to be fully successful in facilitating the recovery of healthy forests. Other management activities and newly developing technologies may serve to complement genetic resistance or to expedite its development, but premature, over-emphasis on some of these may slow the operational program. An understanding of the level, frequency, durability and stability of resistance and its limitations are necessary to management planning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alfaro RI, King JN, van Akker L (2013) Delivering Sitka spruce with resistance against white pine weevil in British Columbia, Canada. For Chron 89(2):235–245

    Article  Google Scholar 

  2. Alfenas AC, Guimarães LMS, Resende MDV (2012) Genetic basis of resistance in eucalyptus spp. pathosystems. In: Sniezko RA, Yanchuk AD, Kliejunas, JT, Palmieri KM, Alexander JM, Frankel SJ, tech. coords (eds) Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. pp 11–15. http://www.fs.fed.us/psw/publications/documents/psw_gtr240/psw_gtr240_011.pdf. Accessed 13 Nov 2016

  3. Amerson HV, Nelson CD, Kubisiak TL, Kuhlman EG, Garcia SA (2015) Identification of nine pathotype-specific genes conferring resistance to fusiform rust in loblolly pine (Pinus taeda L.). Forests 6:2739–2761. doi:10.3390/f6082739

    Article  Google Scholar 

  4. Bai X, Rivera-Vega L, Mamidala P, Bonello P, Herms DA, Mittapalli O (2011) Transcriptomic signatures of ash (Fraxinus spp.) phloem. PLoS ONE 6:1–12. doi:10.1371/journal.pone.0016368

    Google Scholar 

  5. Baier K, Maynard C, Powell W (2012) Chestnuts and light early flowering in chestnut species induced under high-intensity, high-dose light in growth chambers. J TACF 26(3):8–10

    Google Scholar 

  6. Bo Z, Oakes AD, Newhouse AE, Baier KM, Maynard CA, Powell WA (2013) A threshold level of oxalate oxidase transgene expression reduces Cryphonetria parasitica-induced necrosis in a transgenic American chestnut (Castanea dentate) leaf bioassay. Transgenic Res 22:973–982. doi:10.1007/s11248-013-9708-5

    Article  CAS  Google Scholar 

  7. Boshier D, Buggs RJA (2015) The potential for field studies and genomic technologies to enhance resistance and resilience of British tree populations to pests and pathogens. Forestry 88:27–40. doi:10.1093/forestry/cpu046

    Article  Google Scholar 

  8. Bradshaw RE (2004) Dothistroma (red-band) needle blight of pines and the dothistromin toxin: a review. For Path 34:163–185

    Article  Google Scholar 

  9. Buck J, Parra G, Lance D, Reardon R, Binion D, comps (2015) Emerald ash borer national research and technology development meeting; 2014 Oct 15–16, Wooster, OH. FHTET 2015-07. Morgantown, WV: US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 118 p

  10. Burnham CR, Rutter PA, French DW (1986) Breeding blight-resistant chestnuts. Plant Breed Rev 4:347–397

    Google Scholar 

  11. Calic I, Bussotti F, Martinez-Garcia PJ, Neale DB (2016) Recent landscape genomics studies in forest trees-what can we believe. Tree Genet Genomes 12:3. doi:10.1007/s11296-015-0960-0

    Article  Google Scholar 

  12. Campbell FT, Schlarbaum SE (2014) Fading forests III: American forests: What choice will we make? p 167. http://www.nature.org/ourinitiatives/habitats/forests/fading-forests-3-complete-report.pdf. Accessed 5 Dec 2016

  13. Carey DW, Mason ME, Bloese P, Koch JL (2013) Hot-callusing for propagation of American beech by grafting. HortScience 48(5):620–624

    Google Scholar 

  14. Carson SD (1989) Selecting radiata pine for resistance to Dothistroma needle blight. N Z J For Sci 19(1):3–21

    Google Scholar 

  15. Carson SD, Carson MJ (1986) A breed of radiata pine resistant to Dothistroma needle blight. Proceedings plant breeding symposium, DSIR, Lincoln, New Zealand. Agron Soc NZ Spec Publ 5:202–207

    Google Scholar 

  16. Carson SD, Carson MJ (1989) Breeding for resistance in forest trees: a quantitative genetic approach. Ann Rev Phytopathol 27:373–395

    Article  Google Scholar 

  17. Carson SD, Dick A, West GG (1991) Benefits of the Dothistroma: resistant breed of radiata pine. In: Allen JC, Whyte AGD (eds) New directions in forestry: costs and benefits of change, Australian and New Zealand Institutes of Forestry conference, Christchurch, New Zealand

  18. Carson M, Carson S, Te Riini C (2015) Successful varietal forestry with radiata pine in New Zealand. N Z J For 60(1):10–13

    Google Scholar 

  19. Castlebury LA, Rossman AY, Hyten AS (2006) Phylogenetic relationships of Neonectria/Cylindrocarpon on Fagus in North America. Can J Bot 84(9):1417–1433

    CAS  Article  Google Scholar 

  20. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE et al (2007) Replicating genotype-phenotype associations. Nature 447:655–660. doi:10.1038/447655a

    CAS  PubMed  Article  Google Scholar 

  21. Corbin JD, Holl KD (2012) Applied nucleation as a forest restoration strategy. For Ecol Manag 265:37–46

    Article  Google Scholar 

  22. Cowling E, Young C (2013) Narrative history of the resistance screening center: it’s origins, leadership and partial list of public benefits and scientific contributions. Forests 4:666–692

    Article  Google Scholar 

  23. Cubbage F, Pye J, Holmes T, Wagner J (2000) An economic analysis of fusiform rust protection research. South J Appl For 24:77–85

    Google Scholar 

  24. David A, Berrang P, Pike C (2012) White pine blister rust resistance research in Minnesota and Wisconsin. In: Sniezko RA, Yanchuk AD, Kliejunas JT, Palmieri KM, Alexander JM, Frankel SJ, tech. coords (eds) (2012) Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, pp 46–52. http://www.fs.fed.us/psw/publications/documents/psw_gtr240/psw_gtr240_046.pdf Accessed 30 Oct 2016

  25. De La Torre AR, Wang T, Jaquish B, Aitken SN (2014) Adaptation and exogenous selection in a Picea glauca × Picea engelmannii hybrid zone: implications for forest management under climate change. New Phytol 201:687–699. doi:10.1111/nph.12540

    Article  CAS  Google Scholar 

  26. Dowkiw A, Jorge V, Villar M, Voisin E, Guérin V, Faivre-Rampant P, Bresson A, Bitton F, Duplessis S, Frey P, Petre B, Guinet C, Xhaard C, Fabre B, Halkett F, Plomion C, Lalanne C, Bastien C (2012) Breeding poplars with durable resistance to Melampsora larici-populina leaf rust: a multidisciplinary approach to understand and delay pathogen adaptation. In: Sniezko RA, Yanchuk, AD, Kliejunas JT, Palmieri KM, Alexander JM, Frankel SJ, tech. coords (eds) (2012) Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, pp 31–38 http://www.fs.fed.us/psw/publications/documents/psw_gtr240/psw_gtr240_046.pdf. Accessed 22 Nov 2016

  27. Dudley NS, Jones TC, James RL, Sniezko RA, Cannon P, Borthakur D (2015) Applied disease screening and selection program for resistance to vascular wilt in Hawaiian Acacia koa. South For 77(1):65–73. doi:10.2989/20702620.2015.1007263

    Google Scholar 

  28. Ehrlich J (1934) The Beech bark disease: a Nectria disease of Fagus, following Cryptococcus fagi (Baer.). Can J Res 10(6):593–692

    Article  Google Scholar 

  29. Elliott L, Sniezko RA (2000) Cone and seed production in a Port-Orford-cedar containerized orchard. In: Hansen E, Sutton W (eds) Proceedings of the first international meeting on phytophthoras in forest and wildland ecosystems (IUFRO Working Party 7.02.09). 30 August–3 September 1999, Grants Pass, OR. Oregon State University, Corvallis, OR, pp 105–106

  30. Eyles A, Jones W, Riedl K, Cipollini D, Schwartz S, Chan K, Herms DA, Bonello P (2007) Comparative phloem chemistry of Manchurian (Fraxinus mandshurica) and two North American ash species (Fraxinus americana and Fraxinus pennsylvanica). J Chem Ecol 33:1430. doi:10.1007/s10886-007-9312-3

    CAS  PubMed  Article  Google Scholar 

  31. FAO (2015) Selection and breeding for insect and disease resistance. http://www.fao.org/forestry/26445/en/. Accessed 15 Oct 2016

  32. Farjon A (2013) Chamaecyparis lawsoniana. The IUCN red list of threatened species 2013: e.T34004A2840024. http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T34004A2840024.en. Accessed 26 Oct 2016

  33. Feder ME, Walser JC (2005) The biological limitations of transcriptomics in elucidating stress and stress responses. J Evol Biol 18:901–910

    CAS  PubMed  Article  Google Scholar 

  34. Franich RA, Carson MJ, Carson SD (1986) Synthesis and accumulation of benzoic acid in Pinus radiata needles in response to tissue injury by dothistromin, and correlation with resistance of P. radiata families to Dothistroma pini. Physiol Mol Plan Pathol 28:267–286

    CAS  Article  Google Scholar 

  35. Ghelardini L, Santini A (2009) Avoidance by early flushing: a new perspective on Dutch elm disease. Journal of Biogeosciences and Forestry. 2:143–153. doi:10.3832/ifor0508-002

    Article  Google Scholar 

  36. Gibbs JN (1978) Intercontinental epidemiology of Dutch elm disease. Annu Rev Phytopathol 16(1):287–307

    Article  Google Scholar 

  37. Gonçalves JLM, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, Ferras SFB, Lima WP, Brancalion PHS, Hubner A, Bouillet JPD, Laclau JP, Nouvellon Y, Epron D (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manage 301:6–27. doi:10.1016/j.foreco.2012.12.030

    Article  Google Scholar 

  38. Grattapaglia D, Resende MDV (2011) Genomic selection in forest tree breeding. Tree Genet Genome 7:241–255. doi:10.1007/s11295-010-0328-4

    Article  Google Scholar 

  39. Haggman H, Sutela S, Fladung M (2016) Genetic engineering contribution to forest tree breeding efforts, pp 2–11. In: Vettori C (ed) Biosafety of forest transgenic trees, forestry sciences, vol 82. Springer, Dordrecht, pp 2–11. doi:10.1007/978-94-017-7531-1_2

    Google Scholar 

  40. Hansen EM, Hamm PB, Roth LF (1989) Testing port-Orford-cedar for resistance to Phytophthora. Plant Dis 73:791–794

    Article  Google Scholar 

  41. Hansen EM, Reeser P, Sutton W, Sniezko RA (2012) Methods for screening Port-Orford-cedar for resistance to Phytophthora lateralis. In: Sniezko RA, Yanchuk AD, Kliejunas JT, Palmieri KM, Alexander JM, Frankel SJ, tech. coords. (eds) Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, pp 181–188. (http://www.fs.fed.us/psw/publications/documents/psw_gtr240/psw_gtr240_181.pdf. Accessed 13 Nov 2016

  42. Hayes B, Goddard M (2010) Genome wide association and genomic selection in animal breeding. Genome 53:876–883

    CAS  PubMed  Article  Google Scholar 

  43. Hoff R, Bingham RT, McDonald GI (1980) Relative blister rust resistance of white pines. Eur J For Pathol 10:307–316. doi:10.1111/j.1439-0329.1980.tb00042.x

    Article  Google Scholar 

  44. Horns F, Hood ME (2012) The evolution of disease resistance and tolerance in spatially structured populations. Ecol Evol 2(7):1705–1711. doi:10.1002/ece3.290

    PubMed  PubMed Central  Article  Google Scholar 

  45. Houston DR (1982) A technique to artificially infest beech bark with the beech scale, Cryptococcus fagisuga (Lindinger). Res. Pap. NE-507. Broomal, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, 8 p

  46. Houston DR (1983) American beech resistance to Cryptococcus fagisuga. In: Proceedings, IUFRO beech bark disease working party conference, 26 Sept–8 Oct 1982, Hamden, Conn. USDA For. Serv. Gen. Tech. rep. WO-37

  47. Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922. doi:10.1111/j.1469-8137.2010.03593.x

    PubMed  Article  Google Scholar 

  48. Isik F (2014) Genomic selection in forest tree breeding: the concept and an outlook for the future. New For 45:379–401. doi:10.1007/s11055014-9422-z

    Article  Google Scholar 

  49. Iwata H, Hayashi T, Tsumura Y (2011) Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genet Gen 7:747–758

    Article  Google Scholar 

  50. Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177. doi:10.1093/bfgp/elq001

    CAS  Article  Google Scholar 

  51. Johnson R (1984) A critical analysis of durable resistance. Ann Rev Phytopathol 22:309–330

    Article  Google Scholar 

  52. Johnson R, Priestly RH, Taylor EC (1978) Occurrence of virulence in Puccinia striiformis for Compair wheat in England. Cereal Rusts Bull 6:11–13

    Google Scholar 

  53. Juzwik J, McDermott-Kubeczko M, Stewart T, Ginzel M (2016) First report of Geosmithia morbida on ambrosia beetles emerged from thousand cankers-diseased eastern black walnut in Ohio. Plant Dis 100:1238

    Article  Google Scholar 

  54. Keith LM, Hughes RF, Sugiyama LS, Heller WP, Bushe BC, Friday JB (2015) First report of Ceratocystis wilt on ‘ōhi‘a. Plant Dis 99:1296

    Article  Google Scholar 

  55. King JN, Yahchuk AD, Kiss GK, Alfaro RI (1997) Genetic and phenotypic relationships between weevil resistance and height growth in spruce populations of British Columbia. Can J For Res 275:732–739

    Article  Google Scholar 

  56. King JN, David A, Noshad D, Smith J (2010) A review of genetic approaches to the management of blister rust in white pines. For Pathol 40:292–313. doi:10.1094/PDIS-12-14-1293-PD

    Article  Google Scholar 

  57. Kinloch BB Jr, Burton D, Davis DA, Westfall RD, Dunlap J, Vogler D (2012) Strong partial resistance to white pine blister rust in sugar pine. In: Sniezko RA, Yanchuk AD, Kliejunas JT, Palmieri KM, Alexander JM, Frankel SJ, and tech. coords (eds) Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees. Gen Tech Rep PSW-GTR-240. Albany, CA. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, pp 80–91

  58. Kinloch BB Jr., Dupper GE (2002) Genetic specificity in the white pine–blister rust pathosystem. Phytopathology 92:278–280. doi:10.1094/PHYTO.2002.92.3.278

    PubMed  Article  Google Scholar 

  59. Kinloch BB Jr, Sniezko RA, Dupper GE (2003) Origin and distribution of Cr2, a gene for resistance to white pine blister rust in natural populations of western white pine. Phytopathology 93(6):691–694

    CAS  PubMed  Article  Google Scholar 

  60. Kinloch BB Jr., Sniezko RA, Dupper GE (2004) Virulence gene distribution and dynamics of the white pine blister rust pathogen in western North America. Phytopathology 94:751–758

    CAS  PubMed  Article  Google Scholar 

  61. Koch JL (2010) Beech bark disease: the oldest “new” threat to American beech in the United States. Outlooks Pest Manag 21:64–68

    Article  Google Scholar 

  62. Koch JL, Carey DW (2004) Controlled cross-pollinations with American beech trees that are resistant to beech bark disease. In: Yaussy DA, Hix DM, Long RP, Goebel PC (eds) Proceedings, 14th central hardwood forest conference; 2004 March 16–19; Wooster, OH. Gen. Tech. Rep. NE-316. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station, pp 358–364

  63. Koch JL, Carey DW (2005) The genetics of resistance of American beech to beech bark disease: knowledge through 2004. In: Evans CA, Lucas JA, Twery MJ. Beech bark disease: proceedings of the beech bark disease symposium. Gen. Tech. Rep. NE-331. Newtown Square PA, US. Department of Agriculture Forest Service, Northern Research Station, pp 98–105 (149 p)

  64. Koch JL, Carey DW (2014) A technique to screen American beech for resistance to the beech scale insect (Cryptococcus fagisuga Lind). J Vis Exp 87:51515. doi:10.3791/51515

    Google Scholar 

  65. Koch JL, Heyd RL (2013) Battling beech bark disease: establishment of seed orchards in Michigan. Newsl Mich Entomol Soc 58:11–14

    Google Scholar 

  66. Koch JL, Carey DW, Mason ME, Nelson DC (2010) Assessment of beech scale resistance in full- and half-sibling American beech families. Can J For Res 40:265–272

    Article  Google Scholar 

  67. Koch JL, Mason ME, Carey DW (2012) Screening for resistance to beech bark disease: improvements and results from seedlings and grafted field selections. In: Sniezko RA, Yanchuk AD, Kliejunas JT, Palmieri KM, Alexander JM, Frankel SJ. Tech. coords (eds) Proceedings of the 4th international workshop on genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, pp 196–208

  68. Koch JL, Carey DW, Mason ME, Poland TM, Knight KS (2015) Intraspecific variation in Fraxinus pennsylvanica responses to emerald ash borer (Agrilus planipennis). New For 46:995–1011. doi:10.1007/s11056-015-9494-4

    Article  Google Scholar 

  69. Kolpak SE, Sniezko RA, Kegley AJ (2008) Rust infection and survival of 49 Pinus monticola families at a field site six years after planting. Ann For Res 51:67–80

    Google Scholar 

  70. Kovalchuk A, Kerio S, Oghenekaro AO, Jaber E, Raffaello T, Asiegbu FO (2013) Antimicrobial defenses and resistance in forest trees: challenges and perspectives in a genomics era. Annu Rev Phytopathol 51:221–244. doi:10.1146/annurev-phyto-082712-102307

    CAS  PubMed  Article  Google Scholar 

  71. Kushalappa AC, Yogendra KN, Sarkar K, Kage U, Karre S (2016) Gene discovery and genome editing to develop cisgenic crops with improved resistance against pathogen infection. Can J Plant Pathol 38:279–295. doi:10.1080/07060661.2016.1199597

    CAS  Article  Google Scholar 

  72. La Y-J (2009) Korean successes in controlling blister rust of Korean pine. In: Noshad D, Noh EW, King J, Sniezko RA (eds) Breeding and genetic resources of five-needle pines. Proceedings of the conference 2008, Yangyang, Korea. Korea Forest Research Institute, Seoul, pp 3–9. ISBN:978-89-8176-605-4 (93520). http://www.iufro.org/science/divisions/division-2/20000/20200/20215/publications/. Accessed 11 Oct 2016

  73. Lance D, Buck J, Binion D, Reardon R, Mastro V, comps. (2010) Emerald ash borer research and development meeting; 2009 Oct 20–21; Pittsburgh, PA. FHTET 2010-01. Morgantown, WV: U.S. Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 152 pp

  74. Liu J-J, Sniezko RA, Murray M, Wang N, Chen HC, Zamany A, Sturrock RN, Savin D, Kegley A (2016) Genetic diversity and population structure of whitebark pine (Pinus albicaulis Engelm) in western North America. PloS ONE 11(12):0167986. doi:10.1371/journal.pone.0167986

    Google Scholar 

  75. Liu J-J, Sniezko RA, Zamany A, Williams H, Wang N, Kegley A, Savin DP, Chen H, Sturrock RN (2017) Saturated genic SNP mapping identified functional candidates and selection tools for the Pinus monticola Cr2 locus controlling resistance to white pine blister rust. Plant Biotechnol J. doi:10.1111/pbi.12705

    Google Scholar 

  76. Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    PubMed  Article  Google Scholar 

  77. Lovett GM, Weiss M, Liebhold AM, Holmes TP, Leung B, Lambert KF, Orwig DA, Campbell FT, Rosenthal J, McCullough DG, Wildova R, Ayres MP, Canham CD, Foster DR, LaDeau SL, Weldy T (2016) Nonnative forest insects and pathogens in the United States: impacts and policy options. Ecol Appl 26:1437–1455. doi:10.1890/15-1176

    PubMed  Article  Google Scholar 

  78. Lu P, Derbowka D (2009) Breeding eastern white pine for blister rust resistance: a review of progress in Ontario. For Chron 85(5):745–755. doi:10.5558/tfc85745-5

    Article  Google Scholar 

  79. Mastro V, Reardon R, comps (2004) Emerald ash borer research and development meeting, 2003 Sept 30–Oct 1; Port Huron MI. FHTET 2004-02. Morgantown, WV: US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 52 pp

  80. Mastro V, Reardon R, comps (2005a) Emerald ash borer research and development meeting, 2004 Oct 5–6; Romulus MI. FHTET 2004–15. Morgantown, WV: US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 92 pp

  81. Mastro V, Reardon R, Parra G, comps (2005b) Emerald ash borer research and development meeting, 2005 Sept 25–26; Pittsburgh, PA. FHTET 2005–16. Morgantown, WV: US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 84 pp

  82. Mastro V, Reardon R, Parra G, comps (2007) Emerald ash borer and Asian longhorned beetle research and development meeting, 2006 Oct 29–Nov 2, Cincinnati, OH. FHTET 2007-04. Morgantown, WV: US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 158 pp

  83. Mastro V, Lance D, Reardon R, Parra G, comps (2008) Emerald ash borer research and development meeting; 2007 Oct 23–24, Pittsburgh, PA. FHTET 2008–07. Morgantown, WV: U.S. Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 136 pp

  84. McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379. doi:10.1146/annurev.phyto.40.120501.101443

    CAS  PubMed  Article  Google Scholar 

  85. McDougall Phillips, consultants. The cost and time involved in the discovery, development and authorization of a new plant biotechnology derived trait. A Consultancy Study for Crop Life International, Sept 2011, 24 pp. https://www.pdffiller.com/79535229–Phillips-McDougall-A-Consultancy-Study-for-Crop-Life-International. Accessed Nov 16 2016

  86. McKeand S (2015) The success of tree breeding in the southern US. BioResources 10(1):1–2

    CAS  Google Scholar 

  87. McKeand S, Mullin T, Byram T, White T (2003) Deployment of genetically improved loblolly and slash pine in the south. J For 101(3):32–37

    Google Scholar 

  88. McKinney LV, Nielsen LR, Collinge DB, Thomsen IM, Hansen JK, Kjaer ED (2014) The ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant Pathol 63:485–499

    Article  Google Scholar 

  89. Meldrum JR, Champ P, Bond C (2013) Heterogeneous nonmarket benefits of managing white pine bluster rust in high-elevation pine forests. J For Econ 19:61–77

    Article  Google Scholar 

  90. Merkle S (2016) Application of somatic embryogenesis and transgenic technology to conserve and restore threatened forest tree species, pp 261–278. In: Park Y-S, Bonga J, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science. http://www.iufro20902.org/Vegetative%20Propagation%20of.pdf Accessed Dec 9 2016

  91. Metz TD, Roush RT, Tang JD, Shelton AM, Earle ED (1995) Transgenic broccoli expressing a Bacillus thuringiensis insecticidal protein: implications for pest resistance management strategies. Mol Breed 1:309–317

    CAS  Article  Google Scholar 

  92. Miller MR, White A, Boots M (2005) The evolution of resistance: tolerance and control as distinct strategies. J Theor Biol 236:198–207. doi:10.1016/j.jtbi.2005.03.005

    CAS  PubMed  Article  Google Scholar 

  93. Moreira X, Alfaro RI, King JN (2012) Constitutive defenses and damage in Sitka spruce progeny obtained from crosses between white pine weevil resistant and susceptible parents. Forestry 85(1):87–97. doi:10.1093/forestry/cpr060

    Article  Google Scholar 

  94. Muranty H, Jorge V, Bastien C, Lepoittevin C, Bouffier L, Sanchez L (2014) Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genet Genomes 10:1491–1510. doi:10.1007/s11295-014-0790-5

    Article  Google Scholar 

  95. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    CAS  PubMed  Article  Google Scholar 

  96. Nelson CD, Powel WA, Merkle SA, Carlson JE, Hebard FV, Islam-Faridi N, Staton ME, Georgi L (2014) Biotechnology of trees: chestnut. In: Ramawat KG, Merillon J-M, Ahuja MR (eds) Tree biotechnology. CRC, Florida, pp 3–35

  97. Nilausen C, Gelinas N, Bull G (2016) Perceived acceptability of implementing marker-assisted selection in the forests of British Columbia. Forests 7(286):19p. doi:10.3390/f7110286

    Google Scholar 

  98. Oh E, Hansen EM, Sniezko RA (2006) Port-Orford-cedar resistant to Phytophthora lateralis. For Pathol 36:385–394. doi:10.1111/j.1439-0329.2006.00474.x

    Article  Google Scholar 

  99. Palla KJ, Pijut PM (2015) Agrobacterium-mediated genetic transformation of Fraxinus Americana hypocotyls. Plant Cell Tissue Organ Cult 120(2):631–641. doi:10.1007/s11240-014-0630-1

    CAS  Article  Google Scholar 

  100. Parra G, Lance D, Mastro V, Reardon R, Benedict C, comps (2011) Emerald ash borer national research and technology development meeting, 11–12 Oct 2011, Wooster, OH. FHTET 2011–06. Morgantown, WV: US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, p 189

  101. Pharis RP, Kuo CG (1977) Physiology of gibberellins in conifers. Can J For Res 7:299–325

    CAS  Article  Google Scholar 

  102. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65

    Article  Google Scholar 

  103. Plomion C, Bastien C, Bogeat-Triboulot M-B, Boufier L, Dejardin A, Duplessis S, Fady B, Heuertz M, Le Gac A-L, Provost GL, Legue V, Lelu-Walter M-A, Leple J-C, Maury S, Morel A, Oddou-Muratori S, Pilate G, Sanchez L, Scotti I, Scotti-Saintagen C, Segura V, Trontin J-F, Vacher C (2016) Forest tree genomics: 10 achievements from the past 10 years and future prospects. Annals For Sci 73:77–103. doi:10.1007/s13595-015-0488-3

    Article  Google Scholar 

  104. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    CAS  PubMed  Article  Google Scholar 

  105. Porth I, El-Kassaby YA (2014) Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity 6:283–295. doi:10.3390/d6020283

    Article  Google Scholar 

  106. Poudyal NC, Bowker JM, Moore RL (2016) Understanding public knowledge and attitudes toward controlling hemlock woolly adelgid on public forests. J For 114(6):619–628. doi:10.5849/jof.15-015

    Google Scholar 

  107. Powell W (2016) New genetically engineered American chestnut will help restore the decimated, iconic tree. The conversation, Jan 19 2016. https://theconversation.com/new-genetically-engineered-american-chestnut-will-help-restore-the-decimated-iconic-tree-52191. Accessed Dec 9 2016

  108. Puchta H (2016) Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epidgenomes. Plant J 87:5–15. doi:10.1111/tpj.13100 (Epub 2016 Jan 11)

    CAS  PubMed  Article  Google Scholar 

  109. Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ Jr, Kilian A, Grattapaglia D (2012) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128

    PubMed  Article  Google Scholar 

  110. Robb J (2007) Verticillium tolerance: resistance, susceptibility, or mutualism? Can J Botany 85:903–910

    Article  Google Scholar 

  111. Roy BA, Alexander HM, Davidson J, Campbell FT, Burdon JJ, Sniezko R, Brasier C (2014) Increasing forest loss worldwide from invasive pests requires new trade regulations. Front Ecol Environ 12:457–465. doi:10.1890/130240

    Article  Google Scholar 

  112. Ru S, Main D, Evans K, Peace C (2015) Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genomes 11(8):1–12. doi:10.1007/s11295-015-0834-5

    Google Scholar 

  113. Sathuvalli VR, Mehlenbacher SA, Smith DC (2011) DNA markers linked to eastern filbert blight resistance from a hazelnut selection from the Republic of Georgia. J Am Soc Hortic Sci 136(5):350–357

    CAS  Google Scholar 

  114. Schafer JF (1971) Tolerance to plant disease. Annu Rev Phytopathol 9:235–252

    Article  Google Scholar 

  115. Scheben A, Edwards D (2017) Genome editors take on crops. Science 355:1122–1123. doi:10.1126/science.aal4680

    CAS  PubMed  Article  Google Scholar 

  116. Schmidt RA (2003) Fusiform rust of southern pines: a major success for forest disease management. Phytopathology 93:1048–1051

    PubMed  Article  Google Scholar 

  117. Schoettle AW, Sniezko RA (2007) Proactive intervention to sustain high-elevation pine ecosystems threatened by white pine blister rust. J For Res 12(5):327–336

    Article  Google Scholar 

  118. Smalley EB, Guries RP (1993) Breeding elms for resistance to Dutch elm disease. Annu Rev Phytopathol 31:325–352. doi:10.1146/annurev.py.31.090193.001545

    Article  Google Scholar 

  119. Smith MC, Clement SL (2012) Molecular basis of plant resistance to arthropods. Annu Rev Entomol 57:309–328. doi:10.1146/annurev-ento-120710-100642

    CAS  PubMed  Article  Google Scholar 

  120. Sniezko RA (2006) Resistance breeding against nonnative pathogens in forest trees: current successes in North America. Can J Plant Pathol 28:S270–S279

    Article  Google Scholar 

  121. Sniezko RA, Kegley AJ, Danchok, RS, Long S (2007) Variation in resistance to white pine blister rust among 43 whitebark pine families from Oregon and Washington—early results and implications for conservation. In: Goheen EM, Sniezko RA, tech. coords (eds) Proceedings of the conference whitebark pine: whitebark pine: a Pacific Coast perspective; R6-NR-FHP-2007-01. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region, pp 82–97. http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fsbdev2_025894.pdf. Accessed 25 Oct 2016

  122. Sniezko RA, Kegley AJ, Danchok R (2008) White pine blister rust resistance in North American, Asian and European species – results from artificial inoculation trials in Oregon. Ann. For. Res. 51:53–66

    Google Scholar 

  123. Sniezko RA, Mahalovich MF, Schoettle AW, Vogler DR (2011) Past and current investigations of the genetic resistance to Cronartium ribicola in high-elevation five-needle pines. In: Keane RE, Tomback DF, Murray MP, Smith CM (eds) The future of high-elevation, five-needle white pines in western North America: proceedings of the high five symposium. Proceedings RMRS-P-63. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp 246–264. http://www.fs.fed.us/rm/pubs/rmrs_p063/rmrs_p063_246_264.pdf. Accessed 30 Oct 2016

  124. Sniezko RA, Yanchuk AD, Kliejunas, JT, Palmieri KM, Alexander, JM, Frankel SJ, tech. coords (2012a) Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, p 372. http://www.fs.fed.us/psw/publications/documents/psw_gtr240/. Accessed 14 Oct 2016

  125. Sniezko RA, Hamlin J, Hansen EM (2012b) Operational program to develop Phytophthora lateralis-resistant populations of Port-Orford-cedar (Chamaecyparis lawsoniana). In: Sniezko RA, Yanchuk AD, Kliejunas JT, Palmieri KM, Alexander JM, Frankel SJ, tech. coords. (eds) Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, pp 65–79. http://www.fs.fed.us/psw/publications/documents/psw_gtr240/psw_gtr240_065.pdf. Accessed 13 Nov 2016

  126. Sniezko RA, Danchok R, Hamlin J, Kegley A, Long S, Mayo J (2012c) White pine blister rust resistance of 12 western white pine families at three field sites in the Pacific Northwest. In: Sniezko RA, Yanchuk AD, Kliejunas JT, Palmieri KM, Alexander JM, Frankel SJ, and tech. coords (eds) Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees. Gen Tech Rep PSW-GTR-240. Albany, CA. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, pp 356–367. http://www.fs.fed.us/psw/publications/documents/psw_gtr240/psw_gtr240_356.pdf. Accessed 13 Nov 2016

  127. Sniezko RA, Hamlin J, Hansen E, Lucas S (2012d) Nine year survival of 16 Phytophthora lateralis resistant and susceptible Port-Orford-cedar families in a southern Oregon field trial. In: Keane RE, Tomback DF, Murray MP, Smith CM (eds) The future of high-elevation, five-needle white pines in western North America: proceedings of the high five symposium. Proceedings RMRS-P-63. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp 348–355. http://www.fs.fed.us/psw/publications/documents/psw_gtr240/psw_gtr240_348.pdf. Accessed 1 Nov 2016

  128. Sniezko RA, Smith J, Liu J-J, Hamelin RC (2014) Genetic resistance to fusiform rust in southern pines and white pine blister rust in white pines: a contrasting tale of two rust pathosystems—current status and future prospects. Forests 5(9):2050–2083. doi:10.3390/f5092050

    Article  Google Scholar 

  129. Sniezko RA, Danchok R, Savin DP, Liu JJ, Kegley A (2016) Genetic resistance to white pine blister rust in limber pine (Pinus flexilis): major gene resistance in a northern population. Can J For Res 46(9):1173–1178. doi:10.1139/cjfr-2016-0128

    CAS  Article  Google Scholar 

  130. Stanturf JA, Palik BJ, Dumroese RK (2012) Contemporary forest restoration: a review emphasizing function. For Ecol Manag 331:292–323

    Article  Google Scholar 

  131. Steiner KC, Westbrook JW, Hebard FV, Georgi LL, Powell WA, Fitzsimmons SF (2016) Rescue of American chestnut with extraspecific genes following its destruction by a naturalized pathogen. New For. doi:10.1007/s11056-016-9561-5

    Google Scholar 

  132. Strauss SH, Kershen DL, Bouton JH, Redick TP, Tan H, Sedjo RA (2010) Far-reaching deleterious impacts of regulations on research and environmental studies of recombinant DNA-modified perennial biofuel crops in the United States. Bioscience 60:729–741. doi:10.1525/bio.2010.60.9.10

    Article  Google Scholar 

  133. Straw NA, Williams DT, Kulinich O, Gninenko YI (2013) Distribution, impact and spread of emerald ash borer Agrilus planipennis (Coleoptera:Buprestidae) in the Moscow region of Russia. Forestry 86:515–522. doi:10.1093/forestry/cpt031

    Article  Google Scholar 

  134. Tabashnik BE, Cushing NL, Finson N, Johnson MW (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutellidae). J Econ Entomol 83(5):1671–1676

    Article  Google Scholar 

  135. Telford A, Cavers S, Ennos RA, Cottrell JE (2015) Can we protect forests by harnessing variation in resistance to pests and pathogens? Forestry 88:3–12. doi:10.1093/forestry/cpu012

    Article  Google Scholar 

  136. Tomback DF, Achuff PA (2010) Blister rust and western forest biodiversity: ecology, values and outlook for white pines. For Pathol 40:186–225

    Article  Google Scholar 

  137. U.S. Fish & Wildlife Service (2011) Endangered and threatened wildlife and plants; 12-month finding on a petition to list Pinus albicaulis as endangered or threatened with critical habitat. https://www.fws.gov/mountain-prairie/species/plants/whitebarkpine/76FR42631.pdf. Accessed 30 Oct 2016

  138. U.S. Fish & Wildlife Service (2015) Endangered and threatened wildlife and plants: review of native species that are candidates for listing as endangered or threatened, annual notice of findings on resubmitted petitions, annual description of progress on listing actions. Federal register. A notice by the fish and wildlife service on 12/24/2015. https://federalregister.gov/a/2015-32284. Accessed 30 Oct 2016

  139. Valenta V, Moser D, Kuttner M, Peterseil J, Essl F (2015) A high resolution map of emerald ash borer invasion risk for Southern Central Europe. Forests 6(9):3075–3086

    Article  Google Scholar 

  140. Van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022. doi:10.1038/hortres.2014.22

    PubMed  PubMed Central  Article  Google Scholar 

  141. Waring KM, Goodrich B (2012) Artificial regeneration of five-needled pines of western North America: a survey of current practices and future needs. Tree Plant Notes 55(2):55–71

    Google Scholar 

  142. Wheeler NC, Steiner KC, Schlarbaum SE, Neale DB (2015) The evolution of forest genetics and tree improvement research in the United States. J For 113(5):500–510. doi:10.5849/jof.14-120

    Google Scholar 

  143. White TL, Adams WT, Neale DB (2007) Forest genetics. CAB International, Oxfordshire

    Book  Google Scholar 

  144. Whitehill JGA, Popova-Butler A, Green-Church KB, Koch JL, Herms DA, Bonello P (2011) Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer. PLoS ONE 6(9):e24863. doi:10.1371/journal.pone.0024863

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. Whitehill JGA, Opiyo SO, Koch JL, Herms DA, Cipollini DF, Bonello P (2012) Interspecific comparison of constitutive ash phloem phenolic chemistry reveals compounds unique to Manchurian ash, a species resistant to emerald ash borer. J Chem Ecol 38:499–511. doi:10.1007/s10886-012-0125-7

    CAS  PubMed  Article  Google Scholar 

  146. Whitehill JGA, Rigsby C, Cipollini D, Herms DA, Bonello P (2014) Decreased emergence of emerald ash borer from ash treated with methyl jasmonate is associated with induction of general defense traits and the toxic phenolic compound verbascoside. Oecologia 176:147–159. doi:10.1007/s00442-014-3082-8

    Article  Google Scholar 

  147. Wilcox MD (1982) Genetic variation and inheritance of resistance to Dothistroma needle blight in Pinus radiata. N Z J For Sci 12:14–35

    Google Scholar 

  148. Wingfield MJ, Slippers B, Hurley BP, Coutinho TA, Wingfield BD, Roux J (2008) Eucalypt pests and diseases: growing threats to plantation productivity. South For 70:139–144. doi:10.2989/SOUTH.FOR.2008.70.2.9.537

    Google Scholar 

  149. Wingfield MJ, Roux J, Slipper B, Hurley BP, Garnas J, Myburg AA, Wingfield BD (2013) Established and new technologies reduce increasing pest and pathogen threats to Eucalypt plantations. For Ecol Manag 301:35–42. doi:10.1016/j.foreco.2012.09.002

    Article  Google Scholar 

  150. Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  151. Yamagishi N, Li C, Yoshikawa N (2016) Promotion of flowering by apple latent spherical virus vector and virus elimination at high temperature allow accelerated breeding of apple and pear. Front Plant Sci 7(171):1–10. doi:10.3389/fpls.2016.00171

    Google Scholar 

  152. Yanchuk A, Allard G (2009) Tree improvement programmes for forest health: can they keep pace with climate changes? Unasylva 60(231/232):50–56

    Google Scholar 

  153. Zapata-Valenzuela J, Whetten RW, Neale DB, McKeand SE, Isik F (2013) Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. Genes Genomes Genet 3:909–916

    Google Scholar 

  154. Zhang XY, Lu Q, Sniezko RA, Song RQ, Man G (2010) Blister rusts in China: hosts, pathogens, and management. For Pathol 40:369–381. doi:10.1111/j.1439-0329.2010.00663.x

    Article  Google Scholar 

  155. Zivy M, Wienkoop S, Renaut J, Pinheiro C, Goulas E, Carpentier S (2015) The quest for tolerant varieties: the importance of integrating “omics” techniques to phenotyping. Front Plant Sci 6:448. doi:10.3389/fpls.2015.00448

    PubMed  PubMed Central  Article  Google Scholar 

  156. Zobel B, Talbert J (2003) Applied forest tree improvement. The Blackburn Press, Caldwell

    Google Scholar 

Download references

Acknowledgements

This paper is based on an invited talk given by the senior author at the IUFRO Workshop on Biological Invasions in Forests, 18–21 July 2016 in Shepherdstown, West Virginia, USA (https://sites.google.com/site/iufroinvasions2016/). We gratefully acknowledge Dr. Andrew Liehbold (workshop organizer) and the sponsoring organizations. We thank Paul Berrang for reviewing portions of a previous version of this manuscript, Mike Carson, Sue Carson and Barry Jaquish for information about some of the applied resistance programs. We also thank the two anonymous reviewers and special issue editor for their constructive comments on the earlier version of this paper. We acknowledge the USDA Forest Service for our funding to develop this manuscript. Partial funding for JK is also gratefully acknowledged from the Living with Environmental Change (LWEC) Tree Health and Plant Biosecurity Initiative-Phase 2 Grant BB/L012162/1 funded jointly by the BBSRC, Defra, Economic and Social Research Council, Forestry Commission, NERC and the Scottish Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard A. Sniezko.

Additional information

Guest Editors: Andrew Liebhold, Eckehard Brockerhoff and Martin Nuñez / Special issue on Biological Invasions in Forests prepared by a task force of the International Union of Forest Research Organizations (IUFRO).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sniezko, R.A., Koch, J. Breeding trees resistant to insects and diseases: putting theory into application. Biol Invasions 19, 3377–3400 (2017). https://doi.org/10.1007/s10530-017-1482-5

Download citation

Keywords

  • Genetic resistance
  • Durable resistance
  • Forest trees
  • Restoration
  • Breeding