Biological Invasions

, Volume 19, Issue 9, pp 2663–2673 | Cite as

Spatial mixing of mitochondrial lineages and greater genetic diversity in some invasive populations of the American mink (Neovison vison) compared to native populations

  • Karla García
  • Yolanda Melero
  • Santiago Palazón
  • Joaquim Gosálbez
  • Jose Castresana
Original Paper


The genetic characteristics of introduced populations have a relevant impact on their ability to establish and spread. The American mink (Neovison vison), native to North America, is an important invasive species in the Iberian Peninsula. Here, we used mitochondrial DNA sequences data to investigate the genetic diversity and phylogeographic structure of invasive versus native populations of this species. We also evaluated whether genetic diversity in invasive populations could be explained by the genetic characteristics of the native sources from which they derived. Phylogenetic analysis revealed two major lineages in the native range, which indicated a clear separation between western and eastern populations. On the contrary, we found no evidence of genetic structure in the invasive range. This was probably the result of the diverse origins of the released specimens and the rapid expansion and encounters of the introduced populations. We detected spatial mixing of both North American lineages in several sampling localities of the north central area of the Iberian Peninsula, giving rise to high levels of genetic diversity in some areas compared to North American populations. This could potentially lead to higher fitness of these individuals and thus increase the population viability and invasiveness of this species. These results point to the need to better study the populations in which lineages mix and, if necessary, intensify control efforts in them.


American mink Mitochondrial genes Genetic diversity Native range Iberian Peninsula 



This work was financially supported by the research Project CGL2014-53968-P of the “Plan Nacional I+D+I del Ministerio de Economía y Competitividad” (Spain) to J.C., cofinanced with FEDER funds. K.G. was funded by a “Becas Chile-CONICYT” PhD studentship. We acknowledge the following institutions and administrations for samples: University of Alaska Museum (Mammal Collection), Museum of Southwestern Biology (Division of Mammals), Cornell University Museum of Vertebrates (Mammal Collection), Generalitat de Catalunya, Gobierno de La Rioja, Junta de Castilla y León, Xunta de Galicia (Dirección Xeral de Conservación da Natureza), Generalitat Valenciana (Centro de Recuperación de Fauna La Granja de El Saler) and Gobierno de Navarra. We wish to thank to all technicians of administrations involved in sample collection and management, in particular: Asun Gómez, Rafael Romero, Juan del Nido, Olga Alarcia, Gabriel de Pedro, Iñigo Zuberogoitia, Gloria Giralda and José María Gil. We also thank Oliver Hawlitschek and Marina Querejeta for helpful comments on the manuscript.

Supplementary material

10530_2017_1475_MOESM1_ESM.docx (595 kb)
Supplementary material 1 (DOCX 595 kb)


  1. Allendorf FW, Lundquist LL (2003) Population biology, evolution, and control of invasive species. Conserv Biol 17:24–30. doi: 10.1046/j.1523-1739.2003.02365.x CrossRefGoogle Scholar
  2. Belliveau AM, Farid A, O’Connell M, Wright JM (1999) Assessment of genetic variability in captive and wild American mink (Mustela vison) using microsatellite markers. Can J Anim Sci 79:7–16. doi: 10.4141/A97-115 CrossRefGoogle Scholar
  3. Bifolchi A, Picard D, Lemaire C, Cormier JP, Pagano A (2010) Evidence of admixture between differentiated genetic pools at a regional scale in an invasive carnivore. Conserv Genet 11:1–9. doi: 10.1007/s10592-008-9780-1 CrossRefGoogle Scholar
  4. Blackburn TM, Cassey P, Lockwood JL (2009) The role of species traits in the establishment success of exotic birds. Glob Change Biol 15:2852–2860. doi: 10.1111/j.1365-2486.2008.01841.x CrossRefGoogle Scholar
  5. Bonesi L, Palazón S (2007) The American mink in Europe: status, impacts, and control. Biol Conserv 134:470–483. doi: 10.1016/j.biocon.2006.09.006 CrossRefGoogle Scholar
  6. Bonesi L, Chanin P, Macdonald D (2004) Competition between Eurasian otter Lutra lutra and American mink Mustela vison probed by niche shift. Oikos 106:19–26. doi: 10.1111/j.0030-1299.2004.12763.x CrossRefGoogle Scholar
  7. Brunsfeld SJ, Sullivan J, Soltis DE, Soltis PS (2001) Comparative phylogeography of north-western North America: a synthesis. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell Science, Oxford, pp 319–339Google Scholar
  8. Crawford KM, Whitney KD (2010) Population genetic diversity influences colonization success. Mol Ecol 19:1253–1263. doi: 10.1111/j.1365-294X.2010.04550.x CrossRefPubMedGoogle Scholar
  9. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi: 10.1111/j.1365-294X.2007.03538.x CrossRefPubMedGoogle Scholar
  10. Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24:2095–2111. doi: 10.1111/mec.13183 CrossRefPubMedGoogle Scholar
  11. Dunstone N (1993) The mink. T&AD Poyser Ltd., LondonGoogle Scholar
  12. Edelaar P, Roques S, Hobson EA, Gonçalves Da Silva A, Avery ML, Russello MA, Senar JC, Wright TF, Carrete M, Tella JL (2015) Shared genetic diversity across the global invasive range of the monk parakeet suggests a common restricted geographic origin and the possibility of convergent selection. Mol Ecol 24:2164–2176. doi: 10.1111/mec.13157 CrossRefPubMedGoogle Scholar
  13. Estoup A, Ravign V, Hufbauer R, Vitalis R, Gautier M, Facon B (2016) Is there a genetic paradox of biological invasion? Annu Rev Ecol Evol Syst 47:51–72. doi: 10.1146/annurev-ecolsys-121415 CrossRefGoogle Scholar
  14. Fernandes M, Herrero J, Aulagnier S, Amori G (2008) Galemys pyrenaicus. The IUCN Red List of Threatened Species: e.T8826A12934876. doi: 10.2305/IUCN.UK.2008.RLTS.T8826A12934876.en
  15. Fraser EJ, Macdonald DW, Oliver MK, Piertney S, Lambin X (2013) Using population genetic structure of an invasive mammal to target control efforts—an example of the American mink in Scotland. Biol Conserv 167:35–42. doi: 10.1016/j.biocon.2013.07.011 CrossRefGoogle Scholar
  16. Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14:4275–4285. doi: 10.1111/j.1365-294X.2005.02750.x CrossRefPubMedGoogle Scholar
  17. Grapputo A, Boman S, Lindström L, Lyytinen A, Mappes J (2005) The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol Ecol 14:4207–4219. doi: 10.1111/j.1365-294X.2005.02740.x CrossRefPubMedGoogle Scholar
  18. Hampton JO, Spencer PBS, Alpers DL, Twigg LE, Woolnough AP, Doust J, Higgs T, Pluske J (2004) Molecular techniques, wildlife management and the importance of genetic population structure and dispersal: a case study with feral pigs. J Appl Ecol 41:735–743. doi: 10.1111/j.0021-8901.2004.00936.x CrossRefGoogle Scholar
  19. Harrington LA, Harrington AL, Moorhouse T, Gelling M, Bonesi L, Macdonald DW (2009) American mink control on inland rivers in southern England: an experimental test of a model strategy. Biol Conserv 142:839–849. doi: 10.1016/j.biocon.2008.12.012 CrossRefGoogle Scholar
  20. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. doi: 10.1093/nar/gkf436 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Keller SR, Taylor DR (2010) Genomic admixture increases fitness during a biological invasion. J Evol Biol 23:1720–1731. doi: 10.1111/j.1420-9101.2010.02037.x CrossRefPubMedGoogle Scholar
  22. Kolbe JJ, Glor RE, Rodríguez Schettino L, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181. doi: 10.1038/nature02807 CrossRefPubMedGoogle Scholar
  23. Kolbe JJJ, Larson A, Losos JBB, de Queiroz K (2008) Admixture determines genetic diversity and population differentiation in the biological invasion of a lizard species. Biol Lett 4:434–437. doi: 10.1098/rsbl.2008.0205 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lecis R, Ferrando A, Ruiz-Olmo J, Mañas S, Domingo-Roura X (2008) Population genetic structure and distribution of introduced American mink (Mustela vison) in Spain, based on microsatellite variation. Conserv Genet 9:1149–1161. doi: 10.1007/s10592-007-9428-6 CrossRefGoogle Scholar
  25. Macdonald DW, Harrington LA (2003) The American mink: the triumph and tragedy of adaptation out of context. N Z J Zool 30(4):421–441. doi: 10.1080/03014223.2003.9518350 CrossRefGoogle Scholar
  26. Maran T, Skumatov D, Gomez A, Põdra M, Abramov AV, Dinets V (2016) Mustela lutreola. The IUCN Red List of Threatened Species 2016: e.T14018A45199861. doi: 10.2305/IUCN.UK.2016-1.RLTS.T14018A45199861.en
  27. Melero Y, Plaza M, Santulli G, Saavedra D, Gosàlbez J, Ruiz-Olmo J, Palazón S (2012a) Evaluating the effect of American mink, an alien invasive species, on the abundance of a native community: is coexistence possible? Biodivers Conserv 21:1795–1809. doi: 10.1007/s10531-012-0277-3 CrossRefGoogle Scholar
  28. Melero Y, Santulli G, Gómez A, Gosàlbez J, Rodriguez-Refojos C, Palazón S (2012b) Morphological variation of introduced species: the case of American mink (Neovison vison) in Spain. Mamm Biol 77:345–350. doi: 10.1016/j.mambio.2012.02.001 CrossRefGoogle Scholar
  29. Melero Y, Robinson E, Lambin X (2015) Density- and age-dependent reproduction partially compensates culling efforts of invasive non-native American mink. Biol Invasions 17(9):2645–2657. doi: 10.1007/s10530-015-0902-7 CrossRefGoogle Scholar
  30. Michaux JR, Hardy OJ, Justy F, Fournier P, Kranz A, Cabria M, Davison A, Rosoux R, Libois R (2005) Conservation genetics and population history of the threatened European mink Mustela lutreola, with an emphasis on the west European population. Mol Ecol 14:2373–2388. doi: 10.1111/j.1365-294X.2005.02597.x CrossRefPubMedGoogle Scholar
  31. Novak S, Mack R (1993) Genetic variation in Bromus tectorum (Poaceae): comparison between native and introduced populations. Heredity (Edinb) 71:167–176. doi: 10.1038/hdy.1993.121 CrossRefGoogle Scholar
  32. Oliver MK, Piertney SB, Zalewski A, Melero Y, Lambin X (2016) The compensatory potential of increased immigration following intensive American mink population control is diluted by male-biased dispersal. Biol Invasions 18:3047–3061. doi: 10.1007/s10530-016-1199-x CrossRefGoogle Scholar
  33. Palazón S, Ruiz-Olmo J, Bueno F, Bueno F, Jordan G, Palomero G, Palomero G, Munilla I, Romero R, Gimenez YJ (1997) El visón americano en España. In: Palazón S, Ruiz-Olmo J (eds) El visón europeo y el visón americano en España. Colección Técnica, Ministerio de Medio Ambiente, Madrid, pp 107–114Google Scholar
  34. Paradis E (2010) PEGAS: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420. doi: 10.1093/bioinformatics/btp696 CrossRefPubMedGoogle Scholar
  35. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. doi: 10.1111/j.1471-8286.2007.01758.x PubMedPubMedCentralGoogle Scholar
  36. Reid F, Schiaffini M, Schipper J (2016) Neovison vison. The IUCN Red List of Threatened Species 2016: e.T41661A45214988. doi: 10.2305/IUCN.UK.2016-1.RLTS.T41661A45214988.en
  37. Robertson BC, Gemmell NJ (2004) Defining eradication units to control invasive pests. J Appl Ecol 41:1042–1048. doi: 10.1111/j.0021-8901.2004.00984.x CrossRefGoogle Scholar
  38. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi: 10.1016/j.tree.2007.07.002 CrossRefPubMedGoogle Scholar
  39. Ruiz-Olmo J, Munilla I, Romero R (1997) Distribution, status and colonization of the American Mink Mustela vison in Spain. J Wildl Res 2:30–36Google Scholar
  40. Salzburger W, Ewing GB, Von Haeseler A (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 20:1952–1963. doi: 10.1111/j.1365-294X.2011.05066.x CrossRefPubMedGoogle Scholar
  41. Santulli G (2014) Occupancy, abundance, potential distribucion and spatial competition of the critically endangered european mink (Mustela lutreola) and the invasive non-native american mink (Neovison vison) in the Iberian Peninsula. Dissertation, Universitat de BarcelonaGoogle Scholar
  42. Shafer ABA, Cullingham CI, Côté SD, Coltman DW (2010) Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol Ecol 19:4589–4621. doi: 10.1111/j.1365-294X.2010.04828.x CrossRefPubMedGoogle Scholar
  43. Sidorovich V, MacDonald DW (2001) Density dynamics and changes in habitat use by the European mink and other mustelids in connection with the American mink expansion in Belarus. Netherlands J Zool 51:107–126. doi: 10.1163/156854201750210878 CrossRefGoogle Scholar
  44. Sidorovich V, Kruuk H, Macdonald D (1999) Body size, and interactions between European and American mink (Mustela lutreola and M. vison) in Eastern Europe. J Zool 248:521–527. doi: 10.1111/j.1469-7998.1999.tb01051.x CrossRefGoogle Scholar
  45. Sol D, Maspons J, Vall-Llosera M, Bartomeus I, García-Peña GE, Piñol J, Freckleton RP (2012) Unraveling the life history of successful invaders. Science 337:580–583. doi: 10.1126/science.1221523 CrossRefPubMedGoogle Scholar
  46. Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15(14):4261–4293. doi: 10.1111/j.1365-294X.2006.03061.x CrossRefPubMedGoogle Scholar
  47. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360. doi: 10.1111/j.1365-294X.2007.03456.x CrossRefPubMedGoogle Scholar
  49. Uller T, Leimu R (2011) Founder events predict changes in genetic diversity during human-mediated range expansions. Glob Change Biol 17:3478–3485. doi: 10.1111/j.1365-2486.2011.02509.x CrossRefGoogle Scholar
  50. Vandewoestijne S, Schtickzelle N, Baguette M (2008) Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol 6:46–55. doi: 10.1186/1741-7007-6-46 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zalewski A, Piertney SB, Zalewska H, Lambin X (2009) Landscape barriers reduce gene flow in an invasive carnivore: geographical and local genetic structure of American mink in Scotland. Mol Ecol 18:1601–1615. doi: 10.1111/j.1365-294X.2009.04131.x CrossRefPubMedGoogle Scholar
  52. Zalewski A, Michalska-Parda A, Bartoszewicz M, Kozakiewicz M, Brzeziński M (2010) Multiple introductions determine the genetic structure of an invasive species population: American mink Neovison vison in Poland. Biol Conserv 143:1355–1363. doi: 10.1016/j.biocon.2010.03.009 CrossRefGoogle Scholar
  53. Zalewski A, Michalska-Parda A, Ratkiewicz M, Kozakiewicz M, Bartoszewicz M, Brzeziński M (2011) High mitochondrial DNA diversity of an introduced alien carnivore: comparison of feral and ranch American mink Neovison vison in Poland. Divers Distrib 17:757–768. doi: 10.1111/j.1472-4642.2011.00767.x CrossRefGoogle Scholar
  54. Zalewski A, Zalewska H, Lunneryd SG, André C, Mikusiński G (2016) Reduced genetic diversity and increased structure in American mink on the Swedish coast following invasive species control. PLoS ONE 11(6):e0157972. doi: 10.1371/journal.pone.0157972 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Evolutionary Biology, Ecology and Environmental SciencesUniversity of BarcelonaBarcelonaSpain
  2. 2.CREAFCerdanyola del VallèsSpain
  3. 3.Fauna and Flora Service, Department of Territory and SustainabilityGovernment of CataloniaBarcelonaSpain
  4. 4.Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra)BarcelonaSpain

Personalised recommendations