Dispersal and local environment affect the spread of an invasive apple snail (Pomacea maculata) in Florida, USA

Abstract

Dispersal and local environmental factors are major determinants of invasive species distribution. We examined how both dispersal-related geospatial characteristics and environmental factors influence an ongoing invasion of wetlands in a south-central Florida ranchland by non-native apple snails (Pomacea maculata, Ampullariidae). We found P. maculata in 73 (43%) of a random set of 171 wetlands in 2014. We used model selection to evaluate multiple hypotheses of predictors of P. maculata occurrence in 95 wetlands with standing water, including spatially-explicit distances in ditches from wetlands to the presumed entry point, Euclidean (overland) distances, presence/absence of ditches in wetlands, and environmental variables (e.g. pH). We also performed a 5-month field experiment in 20 wetlands to evaluate if snail absence was associated with conditions that limit survival and growth (i.e. unfavorable habitats). Snail occurrence was primarily associated with presence of ditches in wetlands and more neutral wetland pH. These variables more plausibly explained snail occurrence than did Euclidean (overland) distance and minimum ditch travel (rectilinear) distance from propagule sources (a major waterway). Wetland pH best explained survival and growth under the experimental conditions. We found no evidence that prior occupancy by conspecifics affected survival and growth, suggesting that dispersal limitation may contribute to lack of occupancy of wetlands, despite suitable pH. Our study supports man-made conduits as facilitators of dispersal by non-native species, where environmental characteristics (here pH) then also affect colonization within habitats. An understanding of both dispersal mechanisms and local environmental factors is necessary to better predict invasive species distribution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bates D, Maechler M, Bolker B (2013) lme4: linear mixed-effects models using S4 classes. R Packag version 0999999-2 999999. citeulike article id: 1080437

  2. Bilton D, Freeland J, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181. doi:10.1146/annurev.ecolsys.32.081501.114016

    Article  Google Scholar 

  3. Bissonette JA, Adair W (2008) Restoring habitat permeability to roaded landscapes with isometrically-scaled wildlife crossings. Biol Conserv 141:482–488. doi:10.1016/j.biocon.2007.10.019

    Article  Google Scholar 

  4. Bliese PD (2012) Multilevel modeling in R (2.4): a brief introduction to R, the multilevel package, and the nlme package. 15:2006. http://cran.r-project.org/web/packages/multilevel/index.html

  5. Bohlen PJ, Lynch S, Shabman L et al (2009) Paying for environmental services from agricultural lands: an example from the northern Everglades. Front Ecol Environ 7:46–55. doi:10.1890/080107

    Article  Google Scholar 

  6. Boughton EH, Quintana-Ascencio PF, Bohlen PJ et al (2010) Land-use and isolation interact to affect wetland plant assemblages. Ecography. doi:10.1111/j.1600-0587.2009.06010.x

    Google Scholar 

  7. Burks RL, Hensley SA, Kyle CH (2011) Quite the appetite: juvenile island apple snails (Pomacea insularum) survive consuming only exotic invasive plants. J Molluscan Stud 77:423–428. doi:10.1093/mollus/eyr022

    Article  Google Scholar 

  8. Carlsson N (2004) Invading herbivory: the golden apple snail alters ecosystem functioning in Asian wetlands. Ecology 85:1575–1580. doi:10.1890/03-3146

    Article  Google Scholar 

  9. Cattau CE, Fletcher RJ Jr, Reichert BE, Kitchens WM (2016) Counteracting effects of a non-native prey on the demography of a native predator culminate in positive population growth. Ecol Appl 26:1952–1968. doi:10.1890/03-3146

    Article  PubMed  Google Scholar 

  10. Conner SL, Pomory CM, Darby PC (2008) Density effects of native and exotic snails on growth in juvenile apple snails Pomacea paludosa (Gastropoda:Ampullariidae): a laboratory experiment. J Molluscan Stud 74:355–362. doi:10.1093/mollus/eyn024

    Article  Google Scholar 

  11. Cowie RH (2002) Apple snails (Ampullariidae) as agricultural pests: their biology, impacts and management. Molluscs Crop Pests. doi:10.1079/9780851993201.0145

    Google Scholar 

  12. Diamond JM (1975) The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol Conserv 7:129–146. doi:10.1016/0006-3207(75)90052-X

    Article  Google Scholar 

  13. Figuerola J, Green AJ (2002) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw Biol 47:483–494. doi:10.1046/j.1365-2427.2002.00829.x

    Article  Google Scholar 

  14. Francis RA (2012) A handbook of global freshwater invasive species. Earthscan, London. doi:10.4324/9780203127230

    Google Scholar 

  15. Glass NH, Darby PC (2008) The effect of calcium and pH on Florida apple snail, Pomacea paludosa (Gastropoda:Ampullariidae), shell growth and crush weight. Aquat Ecol 43:1085–1093. doi:10.1007/s10452-008-9226-3

    Article  Google Scholar 

  16. Goodall DW (1968) Island biogeography. The theory of island biogeography Robert H. MacArthur Edward O. Wilson. BioScience 18:904–905. doi:10.2307/1294167

    Article  Google Scholar 

  17. Gurevitch J, Fox GA, Wardle GM et al (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14:407–418. doi:10.1111/j.1461-0248.2011.01594.x

    CAS  Article  PubMed  Google Scholar 

  18. Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol Conserv 68:167. doi:10.1016/0006-3207(94)90348-4

    Article  Google Scholar 

  19. Havel JE, Shurin JB, Jones JR (2002) Estimating dispersal from patterns of spread: spatial and local control of lake invasions. Ecology 83:3306–3318. doi:10.1890/0012-9658(2002)083[3306:EDFPOS]2.0.CO;2

    Article  Google Scholar 

  20. Hayes KA, Joshi RC, Thiengo SC, Cowie RH (2008) Out of South America: multiple origins of non-native apple snails in Asia. Divers Distrib 14:701–712. doi:10.1111/j.1472-4642.2008.00483.x

    Article  Google Scholar 

  21. Hayes KA, Cowie RH, Thiengo SC, Strong EE (2012) Comparing apples with apples: clarifying the identities of two highly invasive Neotropical Ampullariidae (Caenogastropoda). Zool J Linn Soc 166:723–753. doi:10.1111/j.1096-3642.2012.00867.x

    Article  Google Scholar 

  22. Heger T, Pahl AT, Botta-Dukát Z et al (2013) Conceptual frameworks and methods for advancing invasion ecology. Ambio 42:527–540. doi:10.1007/s13280-012-0379-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Herzon I, Helenius J (2008) Agricultural drainage ditches, their biological importance and functioning. Biol Conserv 141:1171–1183. doi:10.1016/j.biocon.2008.03.005

    Article  Google Scholar 

  24. Hunter RD (1990) Effects of low pH and low calcium concentration on the pulmonate snail Planorbella trivolvis: a laboratory study. Can J Zool 68:1578–1583. doi:10.1139/z90-233

    Article  Google Scholar 

  25. Kyle C, Kropf A, Burks R (2011) Prime waterfront real estate: apple snails choose wild taro for oviposition sites. Curr Zool 57:630–641. doi:10.1093/czoolo/57.5.630

    Article  Google Scholar 

  26. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species a selection from the global invasive species database. The Invasive Species Specialist Group (ISSG), Auckland

    Google Scholar 

  27. Mazerolle MJ (2005) Drainage ditches facilitate frog movements in a hostile landscape. Landsc Ecol 20:579–590. doi:10.1007/s10980-004-3977-6

    Article  Google Scholar 

  28. Mazerolle MJ (2013) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 1.27. http://CRAN.R-project.org/package=AICcmodavg

  29. Medley KA (2010) Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob Ecol Biogeogr 19:122–133. doi:10.1111/j.1466-8238.2009.00497.x

    Article  Google Scholar 

  30. Medley KA, Boughton EH, Jenkins DG et al (2015) Intense ranchland management tips the balance of regional and local factors affecting wetland community structure. Agric Ecosyst Environ 212:207–244. doi:10.1016/j.agee.2015.06.024

    Article  Google Scholar 

  31. Morrison WE, Hay ME (2010) Feeding and growth of native, invasive and non-invasive alien apple snails (Ampullariidae) in the United States: invasives eat more and grow more. Biol Invasions 13:945–955. doi:10.1007/s10530-010-9881-x

    Article  Google Scholar 

  32. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi:10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  33. Noss RF (2011) Between the devil and the deep blue sea: Florida’s unenviable position with respect to sea level rise. Clim Change 107:1–16. doi:10.1007/s10584-011-0109-6

    Article  Google Scholar 

  34. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65. doi:10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2

    Article  Google Scholar 

  35. Posch H, Garr AL, Reynolds E (2013) The presence of an exotic snail, Pomacea maculata, inhibits growth of juvenile Florida apple snails, Pomacea paludosa. J Molluscan Stud 79:383–385. doi:10.1093/mollus/eyt034

    Article  Google Scholar 

  36. Puth L, Post D (2005) Studying invasion: have we missed the boat? Ecol Lett. doi:10.1111/j.1461-0248.2005.00774.x

    Google Scholar 

  37. Rawlings T, Hayes K, Cowie R, Collins T (2007) The identity, distribution, and impacts of non-native apple snails in the continental United States. BMC Evol Biol 7:97. doi:10.1186/1471-2148-7-97

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reiss KC (2006) Florida Wetland Condition Index for depressional forested wetlands. Ecol Indic 6:337–352. doi:10.1016/j.ecolind.2005.03.013

    Article  Google Scholar 

  39. Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171. doi:10.1126/science.235.4785.167

    CAS  Article  PubMed  Google Scholar 

  40. Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15. doi:10.1046/j.1461-0248.2003.00554.x

    Article  Google Scholar 

  41. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  42. Sakai A, Allendorf FW, Holt J et al (2001) The population biology of invasive species. Annu Rev Ecol Evol Syst 32:305–332. doi:10.1146/annurev.ecolsys.32.081501.114037

    Article  Google Scholar 

  43. Seuffert ME, Martín PR (2009) Dependence on aerial respiration and its influence on microdistribution in the invasive freshwater snail Pomacea canaliculata (Caenogastropoda, Ampullariidae). Biol Invasions 12:1695–1708. doi:10.1007/s10530-009-9582-5

    Article  Google Scholar 

  44. Simberloff D (2003) Eradication—preventing invasions at the outset. Weed Sci 51:247–253. doi:10.1614/0043-1745(2003)051

    CAS  Article  Google Scholar 

  45. Steinman AD, Conklin J, Bohlen PJ, Uzarski DG (2003) Influence of cattle grazing and pasture land use on macroinvertebrate communities in freshwater wetlands. Wetlands 23:877–889. doi:10.1672/0277-5212(2003)023[0877:IOCGAP]2.0.CO;2

    Article  Google Scholar 

  46. Swain HM, Bohlen PJ, Campbell KL et al (2007) Integrated ecological and economic analysis of ranch management systems: an example from South Central Florida. Rangel Ecol Manag 60:1–11. doi:10.2111/05-071R1.1

    Article  Google Scholar 

  47. Václavík T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83. doi:10.1111/j.1472-4642.2011.00854.x

    Article  Google Scholar 

  48. Valéry L, Fritz H, Lefeuvre J-C, Simberloff D (2008) In search of a real definition of the biological invasion phenomenon itself. Biol Invasions 10:1345–1351. doi:10.1007/s10530-007-9209-7

    Article  Google Scholar 

  49. Van Leeuwen C, Huig N, Van Der Velde G et al (2013) How did this snail get here? Several dispersal vectors inferred for an aquatic invasive species. Freshw Biol 58:88–99. doi:10.1111/fwb.12041

    Article  Google Scholar 

  50. Wada T, Ichinose K, Yusa Y, Sugiura N (2004) Decrease in density of the apple snail Pomacea canaliculata (Lamarck) (Gastropoda:Ampullariidae) in paddy fields after crop rotation with soybean, and its population growth during the crop season. Appl Entomol Zool 39:367–372. doi:10.1303/aez.2004.367

    Article  Google Scholar 

  51. Wickham H (2008) ggplot2: an implementation of the grammar of graphics. R package version 0.7

  52. Youens AK, Burks RL (2008) Comparing apple snails with oranges: the need to standardize measuring techniques when studying Pomacea. Aquat Ecol 42:679–684. doi:10.1007/s10452-007-9140-0

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff at Buck Island Ranch and Archbold Biological Station for supporting our research and to the anonymous reviewers for comments that improved the manuscript. S. Pierre was supported by the Department of Biology, University of Central Florida (UCF) and the MacArthur Agro-ecology Research Center. Undergraduate and graduate students from the Department of Biology, UCF helped with field work, and Hilary Swain and Gene Lollis provided logistic support. This paper is contribution No. 174 from the MacArthur Agro-ecology Research Center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steffan M. Pierre.

Appendix

Appendix

See Tables 5, 6, 7, 8, 9, 10 and 11.

Table 5 Rationale for variables used to assess P. maculata Presence—wetland level variables
Table 6 Rationale for variables used to assess snail presence—spatially explicit variables
Table 7 Rationale for selected local variable and P. maculata response metrics
Table 8 AICc model selection table for P. maculata presence
Table 9 AICc model selection table for P. maculata survival
Table 10 AICc model selection table for P. maculata growth: change in shell width (∆width)
Table 11 AICc model selection table for P. maculata growth: change in mass (∆mass)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pierre, S.M., Quintana-Ascencio, P.F., Boughton, E.H. et al. Dispersal and local environment affect the spread of an invasive apple snail (Pomacea maculata) in Florida, USA. Biol Invasions 19, 2647–2661 (2017). https://doi.org/10.1007/s10530-017-1474-5

Download citation

Keywords

  • Invasion
  • Pomacea maculata
  • Dispersal
  • Ditches
  • Wetlands
  • Colonization
  • pH