Skip to main content

Advertisement

Log in

Let’s eat out, there’s crayfish for dinner: American bullfrog niche shifts inside and outside native ranges and the effect of introduced crayfish

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

In invasion ecology, niche width has been recognized as a crucial factor for the outcome of an invasion. A common characteristic of successful invaders seems to be a broad niche width, and their impact on native communities may increase with increasing niche size. Overall, successful invader predators are predicted to shift their niche width by broadening it from native to invaded conditions. The scarcity of ecological studies examining invasive species in their native ranges prevents researchers from knowing if the prevalence of generalist invaders represents conservatism of broad native-range niches or instead niche shifts as a result of different processes acting in the invaded areas. Here we reviewed literature on trophic niche of the predatory invader American bullfrog (Lithobates catesbeianus) in both native and invaded ranges. We used statistical and graphic tools to analyse possible shifts in dietary niche width and the effect of introduced crayfish on the feeding strategy of L. catesbeianus. Globally, our results indicate that food sources used by the species differed in native and invaded sites, with a narrower trophic niche width in invaded areas. However, this pattern was disrupted by the occurrence of introduced crayfish that represents the major driver of the observed niche-width variation. Our data shed light on possible complications in interpreting and predicting patterns of biological invasions due to the interaction among species from different trophic levels that apparently disrupt general patterns that are likely bound to be idiosyncratic and complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amundsen PA, Gabler HM, Staldvik FJ (1996) A new approach to a graphical analysis of feeding strategy from stomach contents data—modification of the Costello method. J Fish Biol 48:607–614

    Google Scholar 

  • Anderson RP (2016) When and how should biotic interactions be considered in models of species niches and distributions? J Biogeogr 44:8–17

    Article  Google Scholar 

  • Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958

    Article  PubMed  Google Scholar 

  • Balfour PS, Morey SR (1999) Prey selection by juvenile bullfrogs in a constructed vernal pool complex. Trans West Sect Wildl Soc 35:34–40

    Google Scholar 

  • Barbaresi S, Tricarico E, Gherardi F (2004) Factors inducing the intense burrowing activity by the red swamp crayfish, Procambarus clarkii, an invasive species. Naturwissenschaften 91:342–345

    Article  CAS  PubMed  Google Scholar 

  • Barrasso DA, Cajade R, Nenda SJ, Baloriani G, Herrera R (2009) Introduction of the American Bullfrog Lithobates catesbeianus (Anura: Ranidae) in natural and modified environments: an increasing conservation problem in Argentina. South Am J Herpetol 4:69–75

    Article  Google Scholar 

  • Boelter RA, Cechin S (2007) Impact of the bullfrog diet (Lithobates catesbeianus-Anura-Ranidae) on native fauna: case study from the region of Agudo-RS-Brazil. Nat Conserv 5:115–123

    Google Scholar 

  • Boily MH, Berube VE, Spear PA, Deblois C, Dassylva N (2005) Hepatic retinoids of bullfrogs in relation to agricultural pesticides. Environ Toxicol Chem 24(5):1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Bolnick DI (2001) Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410(6827):463–466

    Article  CAS  PubMed  Google Scholar 

  • Bouska CK (2004) Temporal changes in the feeding habits of bullfrogs from three different habitat types in the Willamette Valley, Oregon. Master Thesis, Oregon State University, 69 pp

  • Bruggers RL (1973) Food habits of bullfrogs in northwest Ohio. Ohio J Sci 73:185–188

    Google Scholar 

  • Bury RB, Whelan J (1984) Ecology and management of the bullfrog. U.S. Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Carlsson NO, Sarnelle O, Strayer DL (2009) Native predators and exotic prey—an acquired taste? Front Ecol Environ 7:525–532

    Article  Google Scholar 

  • Carpenter HL, Morrison EO (1973) Feeding behavior of the bullfrog, Rana catesbeiana, in north central Texas. Bios 1973:188–193

    Google Scholar 

  • Carpenter NM, Casazza ML, Wylie GD (2002) Rana catesbeina (bullfrog). Diet Herpetol Rev 33:130

    Google Scholar 

  • Cohen N, Howard W (1958) Bullfrog food and growth at the San Joaquin experimental range, California. Copeia 1958:223–224

    Article  Google Scholar 

  • Correia AM (1993) Situation dell’acclimatation de l’écrevisserouge des marais, Procambarus clarkii, au Portugal. Astacicult Fr 35:2–9

    Google Scholar 

  • Correia AM (2001) Seasonal and interspecific evaluation of predation by mammals and birds on the introduced red swamp crayfish Procambarus clarkii (Crustacea, Cambaridae) in a freshwater marsh (Portugal). J Zool 255(04):533–541

    Article  Google Scholar 

  • Costello MJ (1990) Predator feeding strategy and prey importance: a new graphical analysis. J Fish Biol 36:261–263

    Article  Google Scholar 

  • Crayon JJ (1998) Natural history notes: Rana catesbeiana (Bullfrog) diet. Herpetol Rev 29(4):232

    Google Scholar 

  • Culley DD Jr, Gravois CT (1971) Recent developments in frog culture. In: Proceedings of the 25th annual conference of the southeastern association of game and fish commissioners, pp 583–597

  • Daszak P, Strieby A, Cunningham AA, Longcore JE, Brown CC, Porter D (2004) Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of Chytridiomycosis, an emerging fungal disease of amphibians. Herpetol J 14(4):201–207

    Google Scholar 

  • Daza-Vaca JD, Castro-Herrera F (1999) Hábitos alimenticios de la Rana toro (Rana catesbeiana) Anura: Ranidae, en el Valle del Cauca, Colombia. Rev Acad Colomb Cienc Exactas Fís Nat 23:265–274

    Google Scholar 

  • de Fátima Arruda M, Pontes CS, Casali AP, Castro FN, Hattori WT (2014) Daily behavioral activities of bullfrog Lithobates catesbeianus (Shaw 1802). J Anim Behav Biometeorol 2:47–53

    Article  Google Scholar 

  • Diaz De Pascual A, Guerrero C (2008) Diet composition of bullfrogs Rana catesbeiana (Anura: Ranidae) introduced into the Venezuelan Andes. Herpetol Rev 39:425–427

    Google Scholar 

  • Elton CC (1958) The reasons for conservation. The ecology of invasions by animals and plants. Springer, Berlin, pp 143–153

    Book  Google Scholar 

  • Ficetola GF, Maiorano L, Falcucci A, Dendoncker N, Boitani L, Padoa-Schioppa E, Miaud C, Thuiller W (2010) Knowing the past to predict the future: land-use change and the distribution of invasive bullfrogs. Glob Change Biol Bioenergy 16:528–537

    Article  Google Scholar 

  • Frost JV (1974) Australian crayfish. Freshw Crayfish 2:87–95

    Google Scholar 

  • Fulk FD, Whitaker JO Jr (1968) The food of Rana catesbeiana in three habitats in Owen County, Indiana. In: Proceedings of the Indiana Academy of Science, pp 491–496

  • Gerking SD (1994) Feeding ecology of fish. Academic, New York

    Google Scholar 

  • Gherardi F (2001) Behaviour. In: Holdich DM (ed) Biology of freshwater crayfish. Blackwell, Oxford, pp 258–290

    Google Scholar 

  • Giller P (1986) The competitive exclusion principle: other views and a reply. Trends Ecol Evol 1(5):132

    Article  CAS  PubMed  Google Scholar 

  • Godsoe W, Harmon LJ (2012) How do species interactions affect species distribution models? Ecography 35:811–820

    Article  Google Scholar 

  • Goodell K, Parker IM, Gilbert GS (2000) Biological impacts of species invasions: implications for policymakers. In: National Research Council (ed) Incorporating science, economics, and sociology in developing sanitary and phytosanitary standards in international trade. National Academy Press, Washington, pp 87–117

    Google Scholar 

  • Govindarajulu P (2004) Introduced bullfrogs (Rana catesbeiana) in British Columbia: impacts on native Pacific treefrogs (Hylaregilla) and red-legged frogs (Rana aurora). Ph.D. Thesis, University of Victoria, Canada

  • Govindarajulu P, Price WMS, Anholt BR (2006) Introduced bullfrogs (Rana catesbeiana) in western Canada: has their ecology diverged? J Herpetol 40(2):249–260

    Article  Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    Article  CAS  PubMed  Google Scholar 

  • Grant PR, Price TD (1981) Population variation in continuously varying traits as an ecological genetics problem. Am Zool 21(4):795–811

    Article  Google Scholar 

  • Grossman GD (1980) Ecological aspects of ontogenetic shifts in prey size utilization in the bay goby (Pisces: Gobiidae). Oecologia 47(2):233–238

    Article  PubMed  Google Scholar 

  • Grow J, Merchant H (1980) The burrow habit of crayfish, Cambarus diogenes diogenes Girard. Am Midl Nat 103:231–237

    Article  Google Scholar 

  • Hasiotis ST (1993a) Evaluation of the burrowing behaviour of stream and pond dwelling species of Orconectes in the Front Range of Boulder, Colorado, USA: their ethological and geological implications. Freshw Crayfish 9:399–406

    Google Scholar 

  • Hasiotis ST (1993b) Ichnology of Triassic and Holocene cambarid crayfish of North America: an overview of burrowing morphologies in the geological record. Freshw Crayfish 9:407–418

    Google Scholar 

  • Hirai T (2004) Diet composition of introduced bullfrog, Rana catesbeiana, in the Mizorogaike Pond of Kyoto, Japan. Ecol Res 19:375–380

    Article  Google Scholar 

  • Hobbs HH III, Jass JP, Huner JV (1989) A review of global crayfish introductions with particular emphasis on two North American species (Decapoda, Cambaridae). Crustaceana 56:299–316

    Article  Google Scholar 

  • Hothem RL, Meckstroth AM, Wegner KE, Jennings MR, Crayon JJ (2009) Diets of three species of Anurans from the Cache Creek Watershed, California, USA. J Herpetol 43:275–283

    Article  Google Scholar 

  • Howard RD (1978) The influence of male-defended oviposition sites on early embryo mortality in Bullfrogs. Ecology 59:789–798

    Article  Google Scholar 

  • Huner JV, Barr JE (1991) Red swamp crayfish: biology and exploitation. Louisiana State University, Baton Rouge

    Google Scholar 

  • Hurlbert SH (1978) The measurement of nice overlap and some relatives. Ecology 59:67–77

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Hyslop EJ (1980) Stomach content analysis—a review of methods and their application. J Fish Biol 17:411–429

    Article  Google Scholar 

  • Ilhéu M (1996) Lagostim Vermelho dos Pântanos (Procambarus clarkii, Girard): ecologia e impacto trófico. Master Thesis, Universidade de Évora, Portugal

  • Jancowski K, Orchard SA (2013) Stomach contents from invasive American bullfrogs (Lithobates catesbeianus) on southern Vancouver Island, British Columbia, Canada. NeoBiota 16:17–37

    Article  Google Scholar 

  • Jeschke JM, Strayer DL (2006) Determinants of vertebrate invasion success in Europe and North America. Glob Chang Biol 12(9):1608–1619

    Article  Google Scholar 

  • Kawai T, Faulkes Z, Scholtz G (2015) Freshwater crayfish: a global overview. CRC Press, Boca Raton, p 679

    Book  Google Scholar 

  • Kiesecker JM, Blaustein AR, Miller CL (2001) Potential mechanisms underlying the displacement of native red-legged frogs by introduced bullfrogs. Ecology 82(7):1964–1970

    Article  Google Scholar 

  • Kirkpatric RD (1982) Rana catesbeiana (Bullfrog) Food. Herpetol Rev 13:17

    Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Korschgen LJ, Moyle DL (1955) Food habits of the bullfrog in central Missouri farm ponds. Am Midl Nat 54:332–341

    Article  Google Scholar 

  • Korschgen LJ, Baskett TS (1963) Foods of impoundment-and stream-dwelling bullfrogs in Missouri. Herpetologica 19(2):89–99

    Google Scholar 

  • Krupa JJ (2002) Temporal shift in diet in a population of American Bullfrog (Rana catesbeiana) in Carlsbad Caverns National Park. Southwest Nat 47:461–647

    Article  Google Scholar 

  • Larson ER, Olden JD, Usio N (2010) Decoupled conservatism of Grinnellian and Eltonian niches in an invasive arthropod. Ecosphere 1(6):1–13

    Article  Google Scholar 

  • Laufer H (2004) Zum beutespektrum einer population von Ochsenfröschen (Amphibia: Anura: Ranidae) nördlich von Karlsruhe (Baden-Württemnerg Deutschland). Faun Abh 25:139–150

    Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levins R (1968) Evolution in changing environments. Princeton University Press, Princeton

    Google Scholar 

  • Li Y, Liu X, Li X, Petitpierre B, Guisan A (2014) Residence time, expansion toward the equator in the invaded range and native range size matter to climatic niche shifts in non-native species. Glob Ecol Biogeogr 23:1094–1104

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Invasions 8:1535–1545

    Article  Google Scholar 

  • Liu X, Luo Y, Chen J, Guo Y, Bai C, Li Y (2015) Diet and prey selection of the invasive American Bullfrog (Lithobates catesbeianus) in southwestern China. Asian Herpetol Res 6:34–44

    CAS  Google Scholar 

  • Liu X, Guo Y, Luo Y, Li Y (2016) Emergent vegetation coverage and human activities influence oviposition microhabitat selection by invasive bullfrogs (Lithobates catesbeianus) in southwestern China. J Herpetol 50:57–62

    Article  Google Scholar 

  • Lohrer AM, Whitlatch RB, Wada K, Fukui Y (2000) Home and away: comparisons of resource utilization by a marine species in native and invaded habitats. Biol Invasions 2:41–57

    Article  Google Scholar 

  • Lovell RT, Lafleur JR, Hoskins FH (1968) Nutritional value of freshwater crayfish waste meal. J Agric Food Chem 16(2):204–207

    Article  CAS  Google Scholar 

  • Luiselli L (2006) Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114:193–211

    Article  Google Scholar 

  • Lyle C (1936) The crawfishes of Mississippi, with special reference to the biology and control of destructive species. Iowa State Coll J Sci 13:75–77

    Google Scholar 

  • Mahon R, Aiken K (1977) The establishment of the North American Bullfrog, Rana catesbeiana (Amphibia, Anura, Ranidae) in Jamaica. J Herpetol 11(2):197–199

    Article  Google Scholar 

  • McAlpine DF, Dilworth TG (1989) Microhabitat and prey size among three species of Rana (Anura: Ranidae) sympatric in eastern Canada. Can J Zool 67(9):2244–2252

    Article  Google Scholar 

  • McCoy CJ (1968) Diet of bullfrogs (Rana catesbeiana) in central Oklahoma farm ponds. In: Proceedings of the Oklahoma Academy of Science, pp 44–45

  • McKamie JA, Heidt GA (1974) A comparison of spring food habits of the bullfrog, Rana catesbeiana, in three habitats of central Arkansas. Southwest Nat 19:107–111

    Article  Google Scholar 

  • Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421(6923):625–627

    Article  CAS  PubMed  Google Scholar 

  • Moyle PB, Light T (1996) Biological invasions of fresh water: empirical rules and assembly theory. Biol Conserv 78(1):149–161

    Article  Google Scholar 

  • Needham JG (1905) The summer food of the bullfrog (Rana catesbeiana Shaw) at Saranac Inn. N Y State Mus Bull 1:9–15

    Google Scholar 

  • Olsson K, Stenroth P, Nyström P, Granéli W (2009) Invasions and niche width: does niche width of an introduced crayfish differ from a native crayfish? Freshw Biol 54:1731–1740

    Article  Google Scholar 

  • Pavey CR, Eldridge SR, Heywood M (2008) Population dynamics and prey selection of native and introduced predators during a rodent outbreak in arid Australia. J Mammal 89(3):674–683

    Article  Google Scholar 

  • Pearl CA, Hayes MP, Haycock R, Engler JD, Bowerman J (2005) Observations of interspecific amplexus between western North American ranid frogs and the introduced American bullfrog (Rana catesbeiana) and an hypothesis concerning breeding interference. Am Midl Nat 154:126–134

    Article  Google Scholar 

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    Article  PubMed  Google Scholar 

  • Persson L, DeRoos AM, Claessen D, Bystrom P, Lovgren J, Sjorgren S, Svanbäck R, Wahlström E, Westman E (2003) Gigantic cannibals driving a whole-lake trophic cascade. Pro Natl Acad Sci USA 100:4035–4039

    Article  CAS  Google Scholar 

  • Peterson TL, Leivas FWT, Moura MO (2012) Diet and trophic niche of Lithobates catesbeianus (Amphibia: Anura). Zoologia 29:405–412

    Article  Google Scholar 

  • Pianka ER (1981) Competition and niche theory. Theoretical ecology principles and applications. Blackwell, Oxford, pp 167–196

    Google Scholar 

  • Pierotti R, Annett CA (1991) Diet choice in the herring gull: constraints imposed by reproductive and ecological factors. Ecology 72(1):319–328

    Article  Google Scholar 

  • Piet GJ, Pet JS, Guruge WAHP, Vijverberg J, Van Densen WLT (1999) Resource partitioning along three niche dimensions in a size-structured tropical fish assemblage. Can J Fish Aquat Sci 56:1241–1254

    Article  Google Scholar 

  • Pimm SL (1989) Theories of predicting success and impact of introduced species Biological invasions: a global perspective. Wiley, New York, pp 351–368

    Google Scholar 

  • Pinkas L, Oliphant MS, Iverson LK (1971) Food habits of albacore, bluefin luna and bonito in Californian waters. Fish Bull Calif Fish Game 152:1–105

    Google Scholar 

  • Quiroga LB, Moreno MD, Cataldo AA, Aragón-Traverso JH, Pantano MV, Olivares JPS, Sanabria EA (2015) Diet composition of an invasive population of Lithobates catesbeianus (American Bullfrog) from Argentina. J Nat Hist 49:1703–1716

    Article  Google Scholar 

  • Race MS (1982) Competitive displacement and predation between introduced and native mud snails. Oecologia 54(337):347

    Google Scholar 

  • Rehage JS, Barnett BK, Sih A (2005) Foraging behaviour and invasiveness: do invasive Gambusia exhibit higher feeding rates and broader diets than their non-invasive relatives? Ecol Freshw Fish 14:352–360

    Article  Google Scholar 

  • Rödder D, Lötter S (2009) Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Glob Ecol Biogeogr 18(6):674–687

    Article  Google Scholar 

  • Rogers R, Huner JV (1985) Comparison of burrows and burrowing behaviour of five species of cambarid crawfish (Crustacea, Decapoda) from the Southern University Campus, Baton Rouge, Louisiana. Proc La Acad Sci 48:23–29

    Google Scholar 

  • Roughgarden J (1972) Evolution of niche width. Am Nat 1972:683–718

    Article  Google Scholar 

  • Sampedro Marin A, Montañez Huguez L, Suárez Boado O (1985) Alimentación de Rana catesbeiana en dos zonas de captura de Cuba. Cien Biol 13:59–66

    Google Scholar 

  • Sax DF, Early R, Bellemare J (2013) Niche syndromes, species extinction risks, and management under climate change. Trends Ecol Evol 28:517–523

    Article  PubMed  Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39

    Article  CAS  PubMed  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Silva ET, DosReis EP, Feio RN, RibeiroFilho OP (2009) Diet of the invasive frog Lithobates catesbeianus (Shaw, 1802)(Anura: Ranidae) in Viçosa, Minas Gerais state, Brazil. South Am J Herpetol 4:286–294

    Article  Google Scholar 

  • Silva ET, Ribeiro-Filho OP, Feio RN (2011) Predation of native anurans by invasive bullfrogs in southeastern Brazil: spatial variation and effect of microhabitat use by prey. South Am J Herpetol 6:1–10

    Article  Google Scholar 

  • Snyder WE, Evans EW (2006) Ecological effects of invasive arthropod generalist predators. Annu Rev Ecol Evol Syst 37:95–122

    Article  Google Scholar 

  • Stein RA (1977) Selective predation, optimal foraging, and the predator-prey interaction between fish and crayfish. Ecology 58:1237–1253

    Article  Google Scholar 

  • Steiner FM, Schlick-Steiner BC, VanDerWal J, Reuther KD, Christian E, Stauffer C, Crozier RH (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Divers Distrib 14:538–545

    Article  Google Scholar 

  • Stewart MM, Sandison P (1972) Comparative food habits of sympatric mink frogs, bullfrogs, and green frogs. J Herpetol 6:241–244

    Article  Google Scholar 

  • Stiffler DF (1993) Amphibian calcium metabolism. J Exp Biol 184:47–61

    CAS  PubMed  Google Scholar 

  • Swenson RO, McCray AT (1996) Feeding ecology of the tidewater goby. Trans Am Fish Soc 125:956–970

    Article  Google Scholar 

  • Tabachnick BG, Fidell LS (2001) Using multivariate statistics, 4th edn. Allyn and Bacon, Boston

    Google Scholar 

  • Taper ML, Chase TJ (1985) Quantitative genetic models for the coevolution of character displacement. Ecology 66:355–371

    Article  Google Scholar 

  • Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581

    Article  CAS  PubMed  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Toledo LF, Ribeiro RS, Haddad CF (2007) Anurans as prey: an exploratory analysis and size relationships between predators and their prey. J Zool 271:170–177

    Article  Google Scholar 

  • Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630

    Article  CAS  PubMed  Google Scholar 

  • Tyler JD, Hoestenbach RD Jr (1979) Differences in foods of bullfrogs (Rana catesbeiana) from pond and stream habitats in southwestern Oklahoma. Southwest Nat 24:33–38

    Article  Google Scholar 

  • Vázquez D (2006) Exploring the relationship between niche widthand invasion success. In: Cadotte MW, MacMahon SM, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches to nature. Springer, Berlin, pp 307–322

    Chapter  Google Scholar 

  • Vignoli L, Luiselli L (2012) Dietary relationships among coexisting anuran amphibians: a worldwide quantitative review. Oecologia 169:499–509

    Article  PubMed  Google Scholar 

  • Vignoli L, Bombi P, D’Amen M, Bologna MA (2007) Seasonal variation in the trophic niche of a heterochronic population of Triturus alpestris apuanus (Amphibia, Salamandridae) from the south-western Alps. Herpetol J 17:183–191

    Google Scholar 

  • Vignoli L, Bissattini AM, Luiselli L (2017) Food partitioning and the evolution of non-randomly structured communities in tailed amphibians: a worldwide systematic review. Biol J Linn Soc. doi:10.1111/bij.12906

    Google Scholar 

  • Wang Y, Wang Y, Lu P, Zhang F, Li Y (2008) Diet composition of post-metamorphic bullfrogs (Rana catesbeiana) in the Zhoushan archipelago, Zhejiang Province, China. Front Biol China 3:219–226

    Article  CAS  Google Scholar 

  • Werner EE (1977) Species packing and niche complementarity in three sunfishes. Am Nat 111:553–578

    Article  Google Scholar 

  • Werner EE, Wellborn GA, McPeek MA (1995) Diet composition in postmetamorphic bullfrogs and green frogs: implications for interspecific predation and competition. J Herpetol 29:600–607

    Article  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  • Winemiller KO, Pianka ER, Vitt LJ, Joern A (2001) Food web laws or niche theory? Six independent empirical tests. Am Nat 158:193–199

    Article  CAS  PubMed  Google Scholar 

  • Wiser SK, Allen RB, Clinton PW, Platt KH (1998) Community structure and forest invasion by an exotic herb over 23 years. Ecology 79:2071–2081

    Article  Google Scholar 

  • Wu Z, Li Y, Wang Y, Adams MJ (2005) Diet of introduced bullfrogs (Rana catesbeiana): predation on and diet overlap with native frogs on Daishan Island, China. J Herpetol 39:668–674

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Papik Genovesi and Massimo Capula for their comments on an early version of the manuscript. Leonardo Vignoli is gratefully inspired by Roger Federer and is indebted to him for his touching triumph in AO 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Vignoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bissattini, A.M., Vignoli, L. Let’s eat out, there’s crayfish for dinner: American bullfrog niche shifts inside and outside native ranges and the effect of introduced crayfish. Biol Invasions 19, 2633–2646 (2017). https://doi.org/10.1007/s10530-017-1473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1473-6

Keywords

Navigation