Skip to main content

Differential invasion success in aquatic invasive species: the role of within- and among-population genetic diversity

Abstract

Despite a well-developed theoretical basis for the role of genetic diversity in the colonization process, contemporary investigations of genetic diversity in biological invasions have downplayed its importance. Observed reductions in genetic diversity have been argued to have a limited effect on the success of establishment and impact based on empirical studies; however, those studies rarely include assessment of failed or comparatively less-successful biological invasions. We address this gap by comparing genetic diversity at microsatellite loci for taxonomically and geographically paired aquatic invasive species. Our four species pairs contain one highly successful and one less-successful invasive species (Gobies: Neogobius melanostomus, Proterorhinus semilunaris; waterfleas: Bythotrephes longimanus, Cercopagis pengoi; oysters: Crassostrea gigas, Crassostrea virginica; tunicates: Bortylloides violaceous, Botryllus schlosseri). We genotyped 2717 individuals across all species from multiple locations in multiple years and explicitly test whether genetic diversity is lower for less-successful biological invaders within each species pair. We demonstrate that, for gobies and tunicates, reduced allelic diversity is associated with lower success of invasion. We also found that less-successful invasive species tend to have greater divergence among populations. This suggests that intraspecific hybridization may be acting to convert among-population variation to within-population variation for highly successful invasive species and buffering any loss of diversity. While our findings highlight the species-specific nature of the effects of genetic diversity on invasion success, they do support the use of genetic diversity information in the management of current species invasions and in the risk assessment of potential future invaders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Baker H, Stebbins G (eds) (1965) The genetics of colonizing species. Academic Press, New York

    Google Scholar 

  2. Barrett SCH (2015) Foundations of invasion genetics: the Baker and Stebbins legacy. Mol Ecol 24:1927–1941. doi:10.1111/mec.13014

    Article  PubMed  Google Scholar 

  3. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  5. Blackburn TM, Lockwood JL, Cassey P (2015) The influence of numbers on invasion success. Mol Ecol 24:1942–1953. doi:10.1111/mec.13075

    Article  PubMed  Google Scholar 

  6. Bock DG, Caseys C, Cousens RD et al (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297. doi:10.1111/mec.13032

    Article  PubMed  Google Scholar 

  7. Brown JE, Stepien CA (2009) Invasion genetics of the Eurasian round goby in North America: tracing sources and spread patterns. Mol Ecol 18:64–79. doi:10.1111/j.1365-294X.2008.04014.x

    CAS  PubMed  Google Scholar 

  8. Brown JE, Stepien CA (2010) Population genetic history of the dreissenid mussel invasions: expansion patterns across North America. Biol Invasions 12:3687–3710. doi:10.1007/s10530-010-9763-2

    Article  Google Scholar 

  9. Calabrese A, Davis HC (1970) Tolerances and requirements of embryos and larvae of bivalve molluscs. Helgoländer Meeresun 20:553–564. doi:10.1007/BF01609928

    Article  Google Scholar 

  10. Carlton JT (1992) Introduced marine and estuarine mollusks of North America: an end-of-the-20th-century perspective. J Shellfish Res 11:489–505

    Google Scholar 

  11. Carver C, Mallet A, Vercaemer B (2006) Biological synopsis of the colonial tunicates (Botryllus schlosseri and Botrylloides violaceus). Can Man Rep Fish Aquat Sci 2747:42

    Google Scholar 

  12. Cavaletto JF, Vanderploeg HA, Pichlová-PtáČníková R et al (2010) Temporal and spatial separation allow coexistence of predatory cladocerans: Leptodora kindtii, Bythotrephes longimanus and Cercopagis pengoi, in southeastern Lake Michigan. J Gt Lakes Res 36:65–73. doi:10.1016/j.jglr.2010.04.006

    Article  Google Scholar 

  13. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268. doi:10.1146/annurev.ecolsys.18.1.237

    Article  Google Scholar 

  14. Colautti RI, Lau JA (2015) Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol 24:1999–2017. doi:10.1111/mec.13162

    Article  PubMed  Google Scholar 

  15. Colautti RI, MacIsaac HJ (2004) A neutral terminology to define “invasive” species. Divers Distrib 10:135–141. doi:10.1111/j.1366-9516.2004.00061.x

    Article  Google Scholar 

  16. Colautti RI, Manca M, Viljanen M et al (2005) Invasion genetics of the Eurasian spiny waterflea: evidence for bottlenecks and gene flow using microsatellites. Mol Ecol 14:1869–1879. doi:10.1111/j.1365-294X.2005.02565.x

    CAS  Article  PubMed  Google Scholar 

  17. Colosimo PF, Peichel CL, Nereng K et al (2004) The genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS Biol 2:635–641. doi:10.1371/journal.pbio.0020109

    CAS  Article  Google Scholar 

  18. De Wit P, Pespeni MH, Ladner JT et al (2012) The simple fool’s guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Resour 12:1058–1067. doi:10.1111/1755-0998.12003

    Article  PubMed  Google Scholar 

  19. Dijkstra J, Harris LG, Westerman E (2007) Distribution and long-term temporal patterns of four invasive colonial ascidians in the Gulf of Maine. J Exp Mar Bio Ecol 342:61–68. doi:10.1016/j.jembe.2006.10.015

    Article  Google Scholar 

  20. Dlugosch KM, Parker I (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi:10.1111/j.1365-294X.2007.03538.x

    CAS  Article  PubMed  Google Scholar 

  21. Dlugosch KM, Anderson SR, Braasch J et al (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24:2095–2111. doi:10.1111/mec.13183

    Article  PubMed  Google Scholar 

  22. Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214. doi:10.1111/1755-0998.12157

    CAS  Article  PubMed  Google Scholar 

  23. Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63. doi:10.1016/j.tree.2013.09.008

    Article  PubMed  Google Scholar 

  24. Elphinstone MS, Hinten GN, Anderson MJ, Nock CJ (2003) An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol Ecol Notes 3:317–320. doi:10.1046/j.1471-8286.2003.00397.x

    CAS  Article  Google Scholar 

  25. Fisher R (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Book  Google Scholar 

  26. Gillespie G (2007) Distribution of non-indigenous intertidal species on the Pacific Coast of Canada. Nippon Suisan Gakkaishi 73:1133–1137. doi:10.2331/suisan.73.1133

    Article  Google Scholar 

  27. Goudet J, Jombart T (2015) hierfstat: estimation and tests of hierarchical F-statistics. R package version 0.04-22. https://CRAN.R-project.org/package=hierfstat

  28. Grant KA, Shadle MJ, Andraso G (2012) First report of tubenose goby (Proterorhinus semilunaris) in the eastern basin of Lake Erie. J Gt Lakes Res 38:821–824. doi:10.1016/j.jglr.2012.09.019

    Article  Google Scholar 

  29. He X, Johansson ML, Heath DD (2016) Role of genomics and transcriptomics in selection of reintroduction source populations. Conserv Biol 30:1010–1018. doi:10.1111/cobi.12674

    Article  PubMed  Google Scholar 

  30. Johannsson OE, Mills EL, O’Gorman R (1991) Changes in the nearshore and offshore zooplankton communities in Lake Ontario: 1981–88. Can J Fish Aquat Sci 48:1546–1557. doi:10.1139/f91-183

    Article  Google Scholar 

  31. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi:10.1093/bioinformatics/btn129

    CAS  Article  PubMed  Google Scholar 

  32. Jombart T, Devillard S, Balloux F et al (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi:10.1186/1471-2156-11-94

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jude DJ, Reider RH, Smith GR (1992) Establishment of Gobiidae in the Great Lakes basin. Can J Fish Aquat Sci 49:416–421

    Article  Google Scholar 

  34. Kinziger AP, Nakamoto RJ, Anderson EC, Harvey BC (2011) Small founding number and low genetic diversity in an introduced species exhibiting limited invasion success (speckled dace, Rhinichthys osculus). Ecol Evol 1:73–84. doi:10.1002/ece3.8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kocovsky PM, Tallman JA, Jude DJ et al (2011) Expansion of tubenose gobies Proterorhinus semilunaris into western Lake Erie and potential effects on native species. Biol Invasions 13:2775–2784. doi:10.1007/s10530-011-9962-5

    Article  Google Scholar 

  36. Kolbe JJ, Glor RE, Rodríguez Schettino L et al (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181. doi:10.1038/nature02807

    CAS  Article  PubMed  Google Scholar 

  37. Kolbe JJ, Leal M, Schoener TW et al (2012) Founder effects persist despite adaptive differentiation: a field experiment with lizards. Science 335:1086–1089. doi:10.1126/science.1209566

    CAS  Article  PubMed  Google Scholar 

  38. Lenihan HS (1999) Physical-biological coupling on oyster reefs: how habitat structure influences individual performance. Ecol Monogr 69:251–275. doi:10.1890/0012-9615(1999)069[0251:PBCOOR]2.0.CO;2

  39. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi:10.1016/j.tree.2005.02.004

    Article  PubMed  Google Scholar 

  40. MacIsaac HJ, Grigorovich IA, Hoyle JA et al (1999) Invasion of Lake Ontario by the Ponto-Caspian predatory cladoceran Cercopagis pengoi. Can J Fish Aquat Sci 56:1–5. doi:10.1139/cjfas-56-1-1

    Google Scholar 

  41. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  PubMed  Google Scholar 

  42. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65. doi:10.1046/j.1365-294X.2003.02008.x

    CAS  Article  PubMed  Google Scholar 

  43. Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    CAS  Article  PubMed  Google Scholar 

  44. Pettitt-Wade H (2016) Niche breadth and invasion success. Ph.D. dissertation, Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada

  45. Pettitt-Wade H, Wellband KW, Heath DD, Fisk AT (2015) Niche plasticity in invasive fishes in the Great Lakes. Biol Invasions 17:2565–2580. doi:10.1007/s10530-015-0894-3

    Article  Google Scholar 

  46. Ptáčniková R, Vanderploeg HA, Cavaletto JF (2015) Big versus small: does Bythotrephes longimanus predation regulate spatial distribution of another invasive predatory cladoceran, Cercopagis pengoi? J Great Lakes Res 41:143–149. doi:10.1016/j.jglr.2015.10.006

    Article  Google Scholar 

  47. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  48. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Rouger R, Reichel K, Malrieu F et al (2016) Effects of complex life cycles on genetic diversity: cyclical parthenogenesis. Heredity 117:336–347. doi:10.1038/hdy.2016.52

    CAS  Article  PubMed  Google Scholar 

  50. Ruesink JL, Lenihan HS, Trimble AC et al (2005) Introduction of non-native oysters: ecosystem effects and restoration implications. Annu Rev Ecol Evol Syst 36:643–689. doi:10.1146/annurev.ecolsys.36.102003.152638

    Article  Google Scholar 

  51. Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  52. Signorile AL, Wang J, Lurz PWW et al (2014) Do founder size, genetic diversity and structure influence rates of expansion of North American grey squirrels in Europe? Divers Distrib 20:918–930. doi:10.1111/ddi.12222

    Article  Google Scholar 

  53. Stepien CA, Tumeo MA (2006) Invasion genetics of Ponto-Caspian gobies in the Great Lakes: a “cryptic” species, absence of founder effects, and comparative risk analysis. Biol Invasions 8:61–78. doi:10.1007/s10530-005-0237-x

    Article  Google Scholar 

  54. Therriault TW, Grigorovich IA, Kane DD et al (2002) Range expansion of the exotic zooplankter Cercopagis pengoi (Ostroumov) into western Lake Erie and Muskegon Lake. J Gt Lakes Res 28:698–701. doi:10.1016/S0380-1330(02)70615-1

    Article  Google Scholar 

  55. Uller T, Leimu R (2011) Founder events predict changes in genetic diversity during human-mediated range expansions. Glob Chang Biol 17:3478–3485. doi:10.1111/j.1365-2486.2011.02509.x

    Article  Google Scholar 

  56. Waples R, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. doi:10.1111/j.1755-0998.2007.02061.x

    Article  PubMed  Google Scholar 

  57. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi:10.2307/2408641

    CAS  PubMed  Google Scholar 

  58. Yan ND, Leung B, Lewis MA, Peacor SD (2011) The spread, establishment and impacts of the spiny water flea, Bythotrephes longimanus, in temperate North America: a synopsis of the special issue. Biol Invasions 13:2423–2432. doi:10.1007/s10530-011-0069-9

    Article  Google Scholar 

  59. Zenni RD, Nuñez MA (2013) The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos 122:801–815. doi:10.1111/j.1600-0706.2012.00254.x

    Article  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to Dr. Tom Therriault and Dr. Chris McKindsey and their respective Department of Fisheries and Oceans Canada sampling teams who collected the oysters and tunicates used in this study. We would also like to thank Colin Van Overdijk for his assistance collecting the waterfleas and Katerina Stojanovich and Kelly McLean for their assistance collecting gobies. This work was supported by funds from the Canadian Aquatic Invasive Species Network II grant (NSERC) to ATF and DDH. HPW received support from an Ontario Trillium Scholarship and KWW received support from NSERC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel D. Heath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wellband, K.W., Pettitt-Wade, H., Fisk, A.T. et al. Differential invasion success in aquatic invasive species: the role of within- and among-population genetic diversity. Biol Invasions 19, 2609–2621 (2017). https://doi.org/10.1007/s10530-017-1471-8

Download citation

Keywords

  • Alpha diversity
  • Beta diversity
  • Non-indigenous
  • Neutral genetic variation