Skip to main content

The unified framework for biological invasions: a forest fungal pathogen perspective

Abstract

Biological invasions in forests are growing in number and importance globally. The best studied examples are those caused by plants and animals, including insects. In contrast, forest invasions caused by microbes, including fungi, have received much lower levels of attention, particularly in the invasion biology literature. This can at least to some extent be due to the large number of these organisms involved and the fact that the majority of these have yet to be discovered and described. This is equally true for tree-infecting fungi, many of which are devastating pathogens responsible for dramatic invasions in natural and planted forests. This situation is changing through the application of molecular genetic tools that make it possible to accurately identify fungal tree pathogens, to determine their origins, pathways of movement, their modes of reproduction and change; all of which can influence invasions. The role and relevance of symbioses between tree pathogens and insects in forest invasions is also gaining increased attention. So too is our understanding that trees live in close association with large numbers of microbes that make up their holobiome. This has substantial relevance to invasion biology (Zenni et al. 2017). This commentary highlights four emerging issues that need to be considered regarding the invasions by fungal pathogens of trees and it emphasizes opportunities to better understand their relevance and impacts on natural and planted forests. A call is also made for plant pathologists to work more closely with ecologists such that fungal pathogens become more commonly integrated into invasion biology programmes.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Al Adawi AO, Al Jabri RM, Deadman ML, Barnes I, Wingfield B, Wingfield MJ (2013) The mango sudden decline pathogen, Ceratocystis manginecans, is vectored by Hypocryphalus mangiferae (Coleoptera: Scolytinae) in Oman. Eur J Plant Pathol 135:243–251

    Article  Google Scholar 

  • Al Adawi AO, Barnes I, Khan IA, Deadman ML, Wingfield BD, Wingfield MJ (2014) Clonal structure of Ceratocystis manginecans populations from mango wilt disease in Oman and Pakistan. Australas Plant Pathol 43:393–402

    Google Scholar 

  • Allen EA, Humble LM (2002) Non-indigenous species introductions: a threat to Canada’s forests and forest economy. Can J Plant Pathol 24:103–110

    Article  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Anagnostakis SL (1987) The effect of multiple importations of pests and pathogens on a native tree. Biol Invasions 3:245–254

    Article  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    PubMed  Article  Google Scholar 

  • Barnes I, Nakabonge G, Roux J, Wingfield BD, Wingfield MJ (2005) Comparison of populations of the wilt pathogen Ceratocystis albifundus in South Africa and Uganda. Plant Pathol 54:189–195

    CAS  Article  Google Scholar 

  • Barnes I, Wingfield MJ, Carbone I, Kirisits T, Wingfield BD (2014) Population structure and diversity of an invasive pine needle pathogen reflects anthropogenic activity. Ecol Evol 4:3642–3661

    PubMed  PubMed Central  Article  Google Scholar 

  • Beenken L (2017) Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa 297:53–61

    Article  Google Scholar 

  • Berbegal M, Pérez-Sierra A, Armengol J, Grünwald NJ (2013) Evidence for multiple introductions and clonality in Spanish populations of Fusarium circinatum. Phytopathology 103:851–861

    CAS  PubMed  Article  Google Scholar 

  • Blackburn TM, Ewen JG (2017) Parasites as drivers and passengers of human-mediated biological invasions. EcoHealth 14:61. doi:10.1007/s10393-015-1092-6

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    PubMed  Article  Google Scholar 

  • Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Brasier CM (2000) Rise of the hybrid fungi. Nature 405:134–135

    CAS  PubMed  Article  Google Scholar 

  • Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridisation. Bioscience 51:123–133

    Article  Google Scholar 

  • Brasier CM, Buck KW (2001) Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biol Invasions 3:223–233

    Article  Google Scholar 

  • Brasier CM, Cooke DEL, Duncan JM (1999) Origin of a new Phytophthora pathogen through interspecific hybridization. Proc Natl Acad Sci USA 96:5878–5883

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Brasier CM, Kirk SA, Delcan J, Cooke DEL, Jung T, In’t Veld WAM (2004) Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycol Res 108:1172–1184

    CAS  PubMed  Article  Google Scholar 

  • Brawner J, Japarudin Y, Lapammu M, Rauf R, Boden D, Wingfield MJ (2015) Evaluating the inheritance of Ceratocystis acaciivora symptom expression in a diverse Acacia mangium breeding population. South For J For Sci 77:83–90

    Google Scholar 

  • Burdon JJ, Thrall PH, Ericson L (2006) The current and future dynamics of disease in plant communities. Annu Rev Phytopathol 44:19–39

    CAS  PubMed  Article  Google Scholar 

  • Burgess TI, Wingfield MJ (2017) Pathogens on the move: a 100-year global experiment with planted eucalypts. Bioscience 67:14–25

    Article  Google Scholar 

  • Butin H (1995) Tree diseases and disorders: causes, biology and control in forest and amenity trees. Oxford University Press, Oxford

    Google Scholar 

  • Carnegie AJ, Lidbetter JR, Walker J, Horwood MA, Tesoriero L, Glen M, Priest MJ (2010) Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australas Plant Pathol 39:463–466

    Article  Google Scholar 

  • Carnegie AJ, Kathuria A, Pegg GS, Entwistle P, Nagel M, Giblin FR (2016) Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol Invasions 18:127–144

    Article  Google Scholar 

  • Chen S-F, Gryzenhout M, Roux J, Xie Y, Wingfield MJ, Zhou XD (2010) Identification and pathogenicity of Chrysoporthe cubensis on Eucalyptus and Syzygium spp. in South China. Plant Dis 94:1143–1150

    CAS  Article  Google Scholar 

  • Chu-Chou M (1979) Mycorrhizal fungi of Pinus radiata in New Zealand. Soil Biol Biochem 11:557–562

    Article  Google Scholar 

  • Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–825

    Article  Google Scholar 

  • Crous PW, Groenewald EZ, Slippers B, Wingfield MJ (2016) Global food and fibre security threatened by current inefficiencies in fungal identification. Philos Trans R Soc B Biol Sci 371:20160024

  • Crous CJ, Burgess TI, Le Roux JJ, Richardson DM, Slippers B, Wingfield MJ (2017) Ecological disequilibrium drives insect pest and pathogen accumulation in non-native trees. AoB Plant 9:plw081. doi:10.1093/aobpla/plw081

  • De Beer ZW, Duong TA, Barnes I, Wingfield BD, Wingfield MJ (2014) Redefining ceratocystis and allied genera. Stud Mycol 79:187–219

  • Desprez-Loustau M-L, Robin C, Buée M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo DM (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22:472–480

    PubMed  Article  Google Scholar 

  • Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187:475–484

    PubMed  Article  Google Scholar 

  • Díez J (2005) Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt plantations into the Iberian Peninsula. Biol Invasions 7:3–15

    Article  Google Scholar 

  • Drenkhan R, Tomešová-Haataja V, Fraser S, Bradshaw RE, Vahalik P, Mullett M, Martín-García J, Bulman L, Wingfield MJ, Kirisits T, Cech TL, Schmitz S, Baden R, Tubby K, Brown A, Georgieva M, Woods A, Ahumada R, Jankovsky L, Thomsen IM, Adamson K, Marcais B, Vuorinen M, Tsopelas P, Koltay A, Halasz A, La Porta N, Anselmi N, Kiesnere R, Markovskaja S, Kačergius A, Papazova-Anakieva I, Risteski M, Sotirovski K, Lazarević K, Solheim H, Boroń P, Braganca H, Chira D, Musolin DL, Selikhovkin AV, Bulgakov TS, Keča N, Karadžić D, Galovic V, Pap P, Markovic M, Poljakovic Pajnik L, Vasic V, Ondrušková E, Piskur B, Sadiković D, Diez-Casero JJ, Solla A, Millberg H, Stenlid J, Angst A, Queloz V, Lehtijärvi A, Doğmuş-Lehtijärvi HT, Oskay F, Davydenko K, Meshkova V, Craig D, Woodward S, Barnes I (2016) Global geographic distribution and host range of Dothistroma species: a comprehensive review. For Pathol 46:408–442

    Article  Google Scholar 

  • Drenkhan R, Solheim H, Bogacheva A, Riit T, Adamson K, Drenkhan T, Maaten T, Hietala AM (2017) Hymenoscyphus fraxineus is a leaf pathogen of local Fraxinus species in the Russian Far East. Plant Pathol 66:490–500

    CAS  Article  Google Scholar 

  • Dujon B (2006) Yeasts illustrate the molecular mechanisms of eukaryotic genome. Trends Genet 22:375–387

    CAS  PubMed  Article  Google Scholar 

  • Duncan RP, Blackburn TM, Sol D (2003) The Ecology of bird introductions. Annu Rev Ecol Evol Syst 34:71–98

    Article  Google Scholar 

  • Dutech C, Barres B, Bridier J, Robin C, Milgroom MG, Ravignes V (2012) The chestnut blight fungus world tour: successive introduction events from diverse origins in an invasive plant fungal pathogen. Mol Ecol 21:3931–3946

    CAS  PubMed  Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by plants and animals. The University of Chicago Press, Chicago, p 181

    Book  Google Scholar 

  • Érsek T, Nagy ZÁ (2008) Species hybrids in the genus Phytophthora with emphasis on the alder pathogen Phytophthora alni: a review. Eur J Plant Pathol 122:31–39

    Article  Google Scholar 

  • Et-Touil K, Bernier L, Beaulieu J, Berube JA, Hopkin A, Hamelin RC (1999) Genetic structure of Cronartium ribicola populations in Eastern Canada. Phytopathology 89:915–919

    CAS  PubMed  Article  Google Scholar 

  • Farrell BD, Sequeira AS, O’Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027

  • Fourie A, Wingfield MJ, Wingfield BD, Thu PQ, Barnes I (2016) A possible centre of diversity in South East Asia for the tree pathogen, Ceratocystis manginecans. Infect Genet Evol 41:73–83

  • Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Mayfield Iii AE, Hanula JL, Eickwort JM, Miller DR (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis 92:215–224

    Article  Google Scholar 

  • Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci USA 101:10107–10112

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ghelardini L, Pepori AL, Luchi N, Capretti P, Santini A (2016) Drivers of emerging fungal diseases of forest trees. For Ecol Manag 381:235–246

    Article  Google Scholar 

  • Ghelardini L, Luchi N, Pecori F, Pepori AL, Danit R, Della Rocca G, Capretti P, Tsopelas P, Santini A (2017) Ecology of invasive forest pathogens. Biol Invasions (this issue)

  • Gibbs JN (1978) Intercontinental epidemiology of Dutch elm disease. Annu Rev Phytopathol 16:287–307

    Article  Google Scholar 

  • Gibbs J, Brasier CM, Webber J (1994) Dutch elm disease in Britain. Forestry Authority, Research Division, Great Britain

    Google Scholar 

  • Giblin F, Carnegie AJ (2014) Puccinia psidii (Myrtle Rust)–Global host list. Version current at 24 Sept 2014. https://www.anbg.gov.au/anpc/resources/Myrtle_Rust.html

  • Gladieux P, Feurtey A, Hood ME, Snirc A, Clavel J, Dutech C, Roy M, Giraud T (2015) The population biology of fungal invasions. Mol Ecol 24:1969–1986

    CAS  PubMed  Article  Google Scholar 

  • Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C (2007) Puccinia psidii: a threat to the Australian environment and economy—a review. Australas Plant Pathol 36:1–16

    Article  Google Scholar 

  • Gonthier P, Nicolotti G, Linzer R, Guglielmo F, Garbelotto M (2007) Invasion of European pine stands by a North American forest pathogen and its hybridization with a native interfertile taxon. Mol Ecol 16:1389–1400

    CAS  PubMed  Article  Google Scholar 

  • Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2016) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20:131–138

    Article  CAS  Google Scholar 

  • Gryzenhout M, Rodas CA, Mena Portales J, Clegg P, Wingfield BD, Wingfield MJ (2006) Novel hosts of the Eucalyptus canker pathogen Chrysoporthe cubensis and a new Chrysoporthe species from Colombia. Mycol Res 110:833–845

    CAS  PubMed  Article  Google Scholar 

  • Gryzenhout M, Wingfield BD, Wingfield MJ (2009) Taxonomy, phylogeny, and ecology of bark-inhabiting and tree-pathogenic fungi in the Cryphonectriaceae. American Phytopathological Society (APS Press), Saint Paul

    Google Scholar 

  • Hajek AE, Hurley BP, Kennis M, Garnas JR, Bush SJ, Wingfield MJ, van Lenteren JC, Cock MJW (2016) Exotic biological control agents. A solution or a contribution to arthropod invasions. Biol Invasions 18:953–969

    Article  Google Scholar 

  • Hamelin RC, Allaire M, Bergeron MJ, Nicole MC, Lecours N (2005) Molecular epidemiology of white pine blister rust: recombination and spatial distribution. Phytopathology 95:793–799

    CAS  PubMed  Article  Google Scholar 

  • Hanula JL, Mayfield AE, Fraedrich SW, Rabaglia RJ (2008) Biology and host associations of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae), exotic vector of laurel wilt killing redbay trees in the southeastern United States. J Econ Entomol 101:1276–1286

    PubMed  Article  Google Scholar 

  • Harrington TC, Mcnew DL (1997) Self-fertility and uni-directional mating-type switching in Ceratocystis coerulescens, a filamentous ascomycete. Curr Genet 32:52–59

    CAS  PubMed  Article  Google Scholar 

  • Harrington TC, Yun HY, Lu S-S, Goto H, Aghayeva DN, Fraedrich SW (2011) Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia. Mycologia 103:1028–1036

    PubMed  Article  Google Scholar 

  • Hausner G, Reid J, Klassen GR (1993a) On the subdivision of Ceratocystis sl, based on partial ribosomal DNA sequences. Can J Bot 71:52–63

    CAS  Article  Google Scholar 

  • Hausner G, Reid J, Klassen GR (1993b) On the phylogeny of Ophiostoma, Ceratocystis ss, and Microascus, and relationships within Ophiostoma based on partial ribosomal DNA sequences. Can J Bot 71:1249–1265

    CAS  Article  Google Scholar 

  • Hawksworth DL (2015) Proposals to clarify and enhance the naming of fungi under the international code of nomenclature for algae, fungi, and plants. IMA Fungus 6:199

    PubMed  PubMed Central  Article  Google Scholar 

  • Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, Abaci O, Aime C, Asan A, Bai F-Y, De Beer W, Begerow D, Berikten D, Boekhout T, Buchanan PK, Burgess TI, Buzina W, Cai L, Cannon PF, Crane JL, Damm U, Daniel H-M, Van Diepeningen AD, Druzhinina I, Dyer PS, Eberhardt U, Fell JW, Frisvad JC, Geiser DM, Chirlei J, Glienke C, Gräfenhan T, Groenewald M, Groenewald JZ, De Gruyter J, Guého-Kellermann E, Guo L-D, Hibbett DS, Hong S-B, De Hoog GS, Houbraken J, Huhndorf SM, Hyde KD, Ismail A, Johnston PR, Kadaifciler DG, Kirk PM, Kõljalg U, Kurtzman CP, Lagneau P-E, Lévesque CA, Liu X, Lombard L, Meyer W, Miller A, Minter DW, Najafzadeh J, Norvell L, Ozerskaya SM, Öziç R, Pennycook SR, Peterson SW, Pettersson OV, Quaedvlieg W, Robert VA, Ruibal C, SchnüRer J, Schroers H-J, Shivas RG, Slippers B, Spierenburg H, Takashima M, Taşkın E, Thines M, Thrane U, Uztan AH, Van Raak M, Varga J, Vasco A, Verkley G, Videira SIR, De Vries RP, Weir BS, Yilmaz N, Yurkov A, Zhang N (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112

    PubMed  PubMed Central  Article  Google Scholar 

  • Hayward J, Horton TR, Pauchard A, Nuñez MA (2015) A single ectomycorrhizal fungal species can enable a Pinus invasion. Ecology 96:1438–1444

    PubMed  Article  Google Scholar 

  • Heath RN, Gryzenhout M, Roux J, Wingfield MJ (2006) Discovery of the Cryphonectria canker pathogen on native Syzygium species in South Africa. Plant Dis 90:433–438

    Article  Google Scholar 

  • Heath RN, Wingfield MJ, Van Wyk M, Roux J (2009) Insect associates of Ceratocystis albifundus and patterns of association in a native savanna ecosystem in South Africa. Environ Entomol 38:356–364

    CAS  PubMed  Article  Google Scholar 

  • Heitman J, Sun S, James TY (2013) Evolution of fungal sexual reproduction. Mycologia 105:1–27

    CAS  PubMed  Article  Google Scholar 

  • Hepting GH (1974) Death of the American chestnut. J For Hist 18:60–67

    Google Scholar 

  • Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect–fungus symbioses threatens naive forest ecosystems. Proc R Soc Lond B Biol Sci 278:2866–2873

    Article  Google Scholar 

  • Hunter GC, Van Der Merwe NA, Burgess TI, Carnegie AJ, Wingfield BD, Crous PW, Wingfield MJ (2008) Global movement and population biology of Mycosphaerella nubilosa infecting leaves of cold-tolerant Eucalyptus globulus and E. nitens. Plant Pathol 57:235–242

  • Hunter GC, Crous PW, Carnegie AJ, Wingfield MJ (2009) Teratosphaeria nubilosa, a serious leaf disease pathogen of Eucalyptus spp. in native and introduced areas. Mol Plant Pathol 10:1–14

    CAS  PubMed  Article  Google Scholar 

  • Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions 18:921–933

    Article  Google Scholar 

  • Ioos R, Andrieux A, Marçais B, Frey P (2006) Genetic characterization of the natural hybrid species Phytophthora alni as inferred from nuclear and mitochondrial DNA analyses. Fungal Genet Biol 43:511–529

    CAS  PubMed  Article  Google Scholar 

  • Jacobi WR, Koski RD, Negron JF (2013) Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi. For Pathol 43:232–237

    Article  Google Scholar 

  • Jacobs K, Wingfield MJ (2001) Leptographium species: tree pathogens, insect associates and agents of blue-stain. American Phytopathological Society Press, Saint Paul

    Google Scholar 

  • Kemler M, Garnas J, Wingfield MJ, Gryzenhout M, Pillay K-A, Slippers B (2013) Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS ONE 8:e81718

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Kinloch BB Jr (2003) White pine blister rust in North America: past and prognosis. Phytopathology 93:1044–1047

    PubMed  Article  Google Scholar 

  • Kirisits T (2004) Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Bark and wood boring insects in living trees in Europe, a synthesis: Springer, pp 181–236

  • Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J (2014) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J 9:126–138

  • Lee DH, Roux J, Wingfield BD, Wingfield MJ (2015) Variation in growth rates and aggressiveness of naturally occurring self-fertile and self-sterile isolates of the wilt pathogen Ceratocystis albifundus. Plant Pathol 64:1103–1109

    CAS  Article  Google Scholar 

  • Lee D-H, Roux J, Wingfield BD, Barnes I, Mostert L, Wingfield MJ (2016) The genetic landscape of Ceratocystis albifundus populations in South Africa reveals a recent fungal introduction event. Fungal Biol 120:690–700

    PubMed  Article  Google Scholar 

  • Lin X, Heitman J (2007) Mechanisms of homothallism in fungi and transitions between heterothallism and homothallism. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implication. American Society of Microbiology Press, Washington, pp 35–57

    Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2008) Invasion ecology. Blackwell Publishing Ltd, Hoboken

    Google Scholar 

  • Loo JA (2009) Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Invasions 11:81–96

    Article  Google Scholar 

  • Marsberg A, Kemler M, Jami F, Nagel JH, Postma-Smidt A, Naidoo S, Wingfield MJ, Crous PW, Spatafora JW, Hesse CN, Robbertse B, Slippers B (2017) Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health. Mol Plant Pathol 18:477–488

  • Mcdonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential and durable resistance. Annu Rev Phytopathol 40:349–379

    CAS  PubMed  Article  Google Scholar 

  • Mctaggart AR, Van Der Nest MA, Steenkamp ET, Roux J, Slippers B, Shuey LS, Wingfield MJ, Drenth A (2016) Fungal genomics challenges the dogma of name-based biosecurity. PLoS Pathog 12:e1005475

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Milgroom MG, Lipari SE, Ennos RA, Liu Y-C (1993) Estimation of the outcrossing rate in the chestnut blight fungus, Cryphonectria parasitica. Heredity 70:385–392

    Article  Google Scholar 

  • Milgroom MG, Sotirovski K, Spica D, Davis JE, Brewer MT, Milev M, Cortesi P (2008) Clonal population structure of the chestnut blight fungus in expanding ranges in southeastern Europe. Mol Ecol 17:4446–4458

    PubMed  Article  Google Scholar 

  • Müller MM, Hamberg L, Hantula J (2016) The susceptibility of European tree species to invasive Asian pathogens: a literature based analysis. Biol Invasions 18:1–11

    Article  Google Scholar 

  • Nakabonge G, Roux J, Gryzenhout M, Wingfield MJ (2006) Chrysoporthe canker pathogens on Eucalyptus and Syzygium spp. in eastern and southern Africa. Plant Dis 90:734–740

    CAS  Article  Google Scholar 

  • Ndlovu J, Richardson DM, Wilson JRU, Le Roux JJ (2013) Co-invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. J Biogeogr 40:1240–1251

    Article  Google Scholar 

  • Newcombe G, Stirling B, Mcdonald S, Bradshaw HD (2000) Melampsora × columbiana, a natural hybrid of M. medusae and M. occidentalis. Mycol Res 104:261–274

    Article  Google Scholar 

  • Ni M, Feretzaki M, Sun S, Wang X, Heitman J (2011) Sex in fungi. Annu Rev Genet 45:405–430

  • Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206

    CAS  PubMed  Article  Google Scholar 

  • Pegg GS, Gryzenhout M, O’dwyer C, Drenth A, Wingfield MJ (2010) The Eucalyptus canker pathogen Chrysoporthe cubensis discovered in eastern Australia. Australas Plant Pathol 39:343–349

    Article  Google Scholar 

  • Pérez G, Slippers B, Wingfield BD, Hunter GC, Wingfield MJ (2010) Micro- and macrospatial scale analyses illustrates mixed mating strategies and extensive geneflow in populations of an invasive haploid pathogen. Mol Ecol 19:1801–1813

    PubMed  Article  Google Scholar 

  • Perkins DD (1987) Mating-type switching in filamentous ascomycetes. Genetics 115:215–216

  • Pirttilä AM, Frank C (2011) Endophytes of forest trees: biology and applications, vol 80. Springer, Berlin

    Google Scholar 

  • Ploetz RC, Hulcr J, Wingfield MJ, De Beer ZW (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Dis 97:856–872

    Article  Google Scholar 

  • Prospero S, Cleary M (2017) Effects of host variability on the spread of invasive forest diseases. Forests 8:80. doi:10.3390/f8030080

    Article  Google Scholar 

  • Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the Southern Hemisphere: determinants of spread and invadability. J Biogeogr 21:511–527

  • Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  • Rodríguez-Echeverría S, Crisóstomo JA, Nabais C, Freitas H (2009) Belowground mutualists and the invasive ability of Acacia longifolia in coastal dunes of Portugal. Biol Invasions 11:651–661

    Article  Google Scholar 

  • Ross-Davis AL, Graça RN, Alfenas AC, Peever TL, Hanna JW, Uchida JY, Hauff RD, Kadooka CH, Kim MS, Cannon PG, Namba S, Minato N, Simento S, Pérez CA, Rayamajhi MB, Morán M, Lodge DJ, Arguedas M, Medel-Ortiz R, López-Ramirez MA, Tennant P, Glen M, Klopfenstein NB (2013) Tracking the distribution of Puccinia psidii genotypes that cause rust disease on diverse Myrtaceous trees and shrubs. In: Chadwick K, Palacios P, comps. Proceedings of the 61st Annual Western International Forest Disease Work Conference, 6–11 October 2013; Waterton Lakes National Park, AB, Canada. U.S. Department of Agriculture, Forest Service, Forest Health Protection, Washington, DC, pp 131–137

  • Roux J, Wingfield MJ (2009) Ceratocystis species: emerging pathogens of non-native plantation Eucalyptus and Acacia species. South For J For Sci 71:115–120

    Google Scholar 

  • Roux J, Wingfield MJ (2013) Ceratocystis species on the African continent, with particular reference to C. albifundus, an African species in the C. fimbriata sensu lato species complex. The Ophiostomatoid fungi: expanding Frontiers. Biodivers Ser 12:131–138

    Google Scholar 

  • Roux J, Wingfield MJ, Byabashaija DM (2001) First report of Ceratocystis wilt of Acacia mearnsii in Uganda. Plant Dis 85:1029–1029

    Article  Google Scholar 

  • Roux J, Meke G, Kanyi B, Mwangi L, Mbaga A, Hunter GC, Nakabonge G, Heath RN, Wingfield MJ (2005) Diseases of plantation forestry trees in eastern and southern Africa. S Afr J Sci 101:409

    Google Scholar 

  • Roux J, Heath RN, Labuschagne L, Nkuekam GK, Wingfield MJ (2007) Occurrence of the wattle wilt pathogen, Ceratocystis albifundus on native South African trees. For Pathol 37:292–302

    Article  Google Scholar 

  • Roy BA, Alexander HM, Davidson J, Campbell FT, Burdon JJ, Sniezko R, Brasier C (2014) Increasing forest loss worldwide from invasive pests requires new trade regulations. Front Ecol Environ 12:457–465

    Article  Google Scholar 

  • Sakai AK, Allerndof FW, Holt JS (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Santana QC, Coetzee MPA, Wingfield BD, Wingfield MJ, Steenkamp ET (2016) Nursery linked plantation-outbreaks and evidence for multiple introductions of the pitch canker pathogen Fusarium circinatum into South Africa. Plant Pathol 65:357–368

    Article  Google Scholar 

  • Santini A, Ghelardini L, Pace CD, Desprez-Loustau M-L, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250

    CAS  PubMed  Article  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci 109:6241–6246

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Seifert KA, De Beer ZW, Wingfield MJ (2013) The ophiostomatoid fungi: expanding frontiers. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Simpson JA, Thomas K, Grgurinovic CA (2006) Uredinales species pathogenic on species of Myrtaceae. Australas Plant Pathol 35:549–562

    Article  Google Scholar 

  • Sinclair WA, Campana RJ (1978) Dutch elm disease. Perspectives after 60 years, vol 8. Cornell University Agricultural Experiment Station, Ithaca

    Google Scholar 

  • Six DL, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272

    CAS  PubMed  Article  Google Scholar 

  • Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21:90–106

    Article  Google Scholar 

  • Spatafora JW, Blackwell M (1994) The polyphyletic origins of ophiostomatoid fungi. Mycol Res 98:1–9

    Article  Google Scholar 

  • Spiers AG, Hopcroft DH (1994) Comparative studies of the poplar rusts Melampsora medusae, M. larisi-populina and their interspecific hybrid M. medusae-populina. Mycol Res 98:889–903

    Article  Google Scholar 

  • Stielow JB, Lévesque CA, Seifert KA, Meyer W, Irinyi L, Smits D, Renfurm R, Verkley GJM, Groenewald M, Chaduli D (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Pers Mol Phylogeny Evol Fungi 35:242–263

    CAS  Article  Google Scholar 

  • Sun J, Lu M, Gillette NE, Wingfield MJ (2013) Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annu Rev Entomol 58:293–311

    CAS  PubMed  Article  Google Scholar 

  • Taerum SJ, Duong TA, De Beer ZW, Gillette N, Sun J-H, Owen DR, Wingfield MJ (2013) Large shift in symbiont assemblage in the invasive red turpentine beetle. PLoS ONE 8:e78126

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Taerum SJ, Konečný A, Beer ZW, Cibrián-Tovar D, Wingfield MJ (2016) Population genetics and symbiont assemblages support opposing invasion scenarios for the red turpentine beetle (Dendroctonus valens). Biol J Linn Soc. doi:10.1111/bij.12781

    Google Scholar 

  • Taerum SJ, Hoareau TB, Duong TA, De Beer ZW, Jankowiak RJ, Wingfield MJ (2017) Putative origins of the fungus Leptographium procerum. Fungal Biol 121:82–94

    PubMed  Article  Google Scholar 

  • Tarigan M, Roux J, Van Wyk M, Tjahjono B, Wingfield MJ (2011) A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp. nov. in Indonesia. South Afr J Bot 77:292–304

    Article  Google Scholar 

  • Taylor JW (2011) One fungus = One name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus 2:113–120

    PubMed  PubMed Central  Article  Google Scholar 

  • Taylor JW, Jacobson DJ, Fisher MC (1999) The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37:197–246

    CAS  PubMed  Article  Google Scholar 

  • Tsopelas P, Santini A, Wingfield MJ, de Beer ZW (2017) Canker stain: a lethal disease destroying iconic plane trees. Plant Dis 101:645–658

  • Van Der Merwe NA, Steenkamp ET, Rodas C, Wingfield BD, Wingfield MJ (2013) Host switching between native and non-native trees in a population of the canker pathogen Chrysoporthe cubensis from Colombia. Plant Pathol 62:642–648

    Article  Google Scholar 

  • Van Wyk M, Al Adawi AO, Khan IA, Deadman ML, Al Jahwari AA, Wingfield BD, Ploetz R, Wingfield MJ (2007) Ceratocystis manginecans sp. nov., causal agent of a destructive mango wilt disease in Oman and Pakistan. Fungal Divers 27:213–230

    Google Scholar 

  • Webber, J. F.; C. M. Brasier, 1984: Transmission of Dutch elm disease: a study of the processes involved [Scolytidae]. Symposium series-British Mycological Society

  • Wilken PM, Steenkamp ET, Wingfield MJ, De Beer ZW, Wingfield BD (2014) DNA loss at the Ceratocystis fimbriata mating locus results in self-sterility. PLoS ONE 9:e92180

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Williamson M (1996) Biological invasions, vol 15. Springer, Berlin

    Google Scholar 

  • Wilson AM, Wilken PM, Van Der Nest MA, Steenkamp ET, Wingfield MJ, Wingfield BD (2015) Homothallism: an umbrella term for describing diverse sexual behaviours. IMA Fungus 6:207–214

    PubMed  PubMed Central  Article  Google Scholar 

  • Wingfield MJ (2003) Daniel McAlpine memorial lecture increasing threat of diseases to exotic plantation forests in the Southern Hemisphere: lessons from Cryphonectria canker. Australas Plant Pathol 32:133–139

    Article  Google Scholar 

  • Wingfield MJ, Hammerbacher A, Ganley RJ, Steenkamp ET, Gordon TR, Wingfield BD, Coutinho TA (2008) Pitch canker caused by Fusarium circinatum—a growing threat to pine plantations and forests worldwide. Australas Plant Pathol 37:319–334

    Article  Google Scholar 

  • Wingfield MJ, Slippers B, Wingfield BD (2010) Novel associations between pathogens, insects and tree species threaten world forests. NZ J For Sci 40:S95–S103

    Google Scholar 

  • Wingfield MJ, De Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, Lombard L, Crous PW (2012) One fungus, one name promotes progressive plant pathology. Mol Plant Pathol 13:604–613

    CAS  PubMed  Article  Google Scholar 

  • Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349:9502–9507

    Article  CAS  Google Scholar 

  • Wingfield MJ, Garnas JR, Hajek A, Hurley BP, de Beer ZW, Taerum SJ (2016) Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol Invasions 18:1045–1056

    Article  Google Scholar 

  • Wingfield MJ, Barnes I, De Beer ZW, Roux J, Wingfield BD, Taerum SJ (2017) Novel associations between ophiostomatoid fungi, insects and tree hosts driving tree invasions: current status—future prospects. Biol Invasions (this issue)

  • Witthuhn RC, Harrington TC, Wingfield BD, Steimel JP, Wingfield MJ (2000) Deletion of the MAT-2 mating-type gene during uni-directional mating-type switching in Ceratocystis. Curr Genet 38:48–52

    CAS  PubMed  Article  Google Scholar 

  • Wood AR (2012) Uromycladium tepperianum (a gall-forming rust fungus) causes a sustained epidemic on the weed Acacia saligna in South Africa. Australas Plant Pathol 41:255–261

    Article  Google Scholar 

  • Woodward S, Stenlid J, Karjalainen R, Hüttermann A (1998) Heterobasidion annosum: biology, ecology, impact and control. Cab International, Wallingford

    Google Scholar 

  • Zenni RD, Dickie IA, Wingfield MJ, Hirsch H, Crous CJ, Meyerson LA, Burgess TI, Zimmermann TG, Klock MM, Siemann E, Erfmeier A, Aragon R, Moniti L, Le Roux JJ (2017) Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions. AoB Plants 9:plw085

    Google Scholar 

  • Zhong S, Yang B, Alfenas AC (2008) Permanent genetic resources: development of microsatellite markers for the guava rust fungus, Puccinia psidii. Mol Ecol Res 8:348–350

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the DST/NRF Centre of Excellence in Tree Health Biotechnology, the National Research Foundation (South Africa) and the Tree Protection Cooperative Programme (TPCP) for financial support. We thank Dr. Carlos Rodas and Ms Izette Greyling for providing us with the photographs for Fig. 1c and Fig. 1b respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Barnes.

Additional information

Guest Editors: Andrew Liebhold, Eckehard Brockerhoff and Martin Nunẽz/Special issue on Biological Invasions in Forests prepared by a task force of the International Union of Forest Research Organizations (IUFRO).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wingfield, M.J., Slippers, B., Wingfield, B.D. et al. The unified framework for biological invasions: a forest fungal pathogen perspective. Biol Invasions 19, 3201–3214 (2017). https://doi.org/10.1007/s10530-017-1450-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1450-0

Keywords

  • Invasive fungi
  • Invasive forest pathogen (IFP)
  • Symbioses
  • Tree disease