Biological Invasions

, Volume 19, Issue 8, pp 2247–2259 | Cite as

Reproductive timing as a constraint on invasion success in the Ring-necked parakeet (Psittacula krameri)

  • Alvaro Luna
  • Detlev Franz
  • Diederik Strubbe
  • Assaf Shwartz
  • Michael P. Braun
  • Dailos Hernández-Brito
  • Yariv Malihi
  • Asaf Kaplan
  • Emiliano Mori
  • Mattia Menchetti
  • Chris A. M. van Turnhout
  • Dave Parrott
  • Frank-M. Chmielewski
  • Pim EdelaarEmail author
Original Paper


Climate similarity favors biological invasion, but a match between seasonality in the novel range and the timing of life cycle events of the invader also influences the outcome of species introduction. Yet, phenology effects on invasion success have generally been neglected. Here we study whether a phenological mismatch limits the non-native range of a globally successful invader, the Ring-necked parakeet, in Europe. Given the latitudes at which parakeets have established across Europe, they breed earlier than expected based on breeding dates from the native Asian range. Moreover, comparing the breeding dates of European populations to those of parakeets in the native Asian range, to five native breeding bird species in Europe and to the start of the growing season of four native European trees shows that the discrepancy between expected and actual breeding phenology is greater in northern Europe. In northern European populations, this temporal mismatch appears to have negative effects on hatching success, and on population growth rates in years that are colder than average in the first six months. Phenological mismatch also can explain why parakeets from African populations (that are more likely to breed in autumn) have been poor invaders compared to parakeets from Asia. These lines of evidence support the hypothesis that the reproductive phenology of the Ring-necked parakeet can be a limiting factor for establishment and range expansion in colder climates. Our results provide growing support for the hypothesis that the match between climate seasonality and timing of reproduction (or other important life cycle events) can affect the establishment success, invasive potential and distribution range of introduced non-native species, beyond the mere effect of climate similarity.


Phenology Climate Invasive species Adaptation Urban environment Pet trade Parrots 



We thank Marco van Wieringen for carrying out roost counts in Haarlem, Christopher Rhodes for collecting nesting data in London, NPA rangers for help with roost counts in Israel, and D. Brito, I. Brito and D. Hernández for help with obtaining feather samples on Tenerife. We would like to acknowledge all natural history collections that gave access to their egg collections online or in private, and especially Iris Heynen (Staatliches Museum für Naturkunde, Stuttgart, Germany) and the National Museum of Scotland. We thank the staff of María Luisa Park for access. The work in London was funded by The Department for Environment, Food and Rural Affairs (Defra). DS is funded by a Marie Skłodowska-Curie Action under the Horizon 2020 call (H2020-MSCA-IF-2015, Grant Number 706318), and acknowledges the Danish National Research Foundation for support to the Center for Macroecology, Evolution and Climate (Grant Number DNRF96). PE was supported by the Spanish Ministry of Economy and Competitiveness through grants RYC-2011-07889, CGL-2012-35232, CGL2013-49460-EXP and CGL2016-79483-P, with support from the European Regional Development Fund. We further acknowledge the financial support by COST Action ES1304 (‘ParrotNet’) that facilitated collaboration between the authors. The contents of this manuscript are the authors’ responsibility and neither COST nor any person acting on its behalf is responsible for the use which might be made of the information contained in it.


  1. Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539CrossRefPubMedGoogle Scholar
  2. Both C, te Marvelde L (2007) Climate change and timing of avian breeding and migration throughout Europe. Clim Res 35:93–105CrossRefGoogle Scholar
  3. Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83CrossRefPubMedGoogle Scholar
  4. Both C, Bijlsma RG, Foppen RPB, Siepel H, Van Strien AJ, Van Turnhout CAM (2010) Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc R Soc B 277:1259–1266CrossRefPubMedGoogle Scholar
  5. Braun M (2004) Alien species in urban habitats: ecology and niche expansion of Ring-necked Parakeets (Psittacula krameri SCOPOLI, 1769). M.Sc. Thesis, University of Marburg, GermanyGoogle Scholar
  6. Braun MP (2007) Welchen Einfluss hat die Gebäudedämnung im Rahmen des EU-Klimaschutzes auf die Brutbiologie tropischer Halsbandsittiche (Psittacula krameri) im gemässigten Mitteleuropa? Ornithol Jh Bad-Württ 23:39–56Google Scholar
  7. Braun MP, Wink M (2013) Nestling development of ring-necked parakeets (Psittacula krameri) in a nest box population. Open Ornithol J 6:9–24CrossRefGoogle Scholar
  8. Butler CJ (2003) Population biology of the introduced rose ringed parakeet (Psittacula krameri) in the U.K. Ph.D. Thesis, Department of Zoology, Edward Grey Institute of Field OrnithologyGoogle Scholar
  9. Butler CJ, Gosler A (2004) Sexing and ageing rose-ringed parakeets (Psittacula krameri) in Britain. Ringing Migr 22:7–12CrossRefGoogle Scholar
  10. Cardador L, Carrete M, Gallardo B, Tella JL (2016) Combining trade data and niche modeling improves predictions of the origin and distribution of non-native European populations of a globally invasive species. J Biogeogr 43:967–978CrossRefGoogle Scholar
  11. Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agr For Meteorol 108:101–112CrossRefGoogle Scholar
  12. Chmielewski FM, Heider S, Moryson S, Bruns E (2013) International phenological observation networks—concept of IPG and GPM (chapter 8). In: Schwartz MD (ed) Phenology: an integrative environmental science, 2nd edn. Springer, Dordrecht, pp 137–153CrossRefGoogle Scholar
  13. Clergeau P, Vergnes A (2011) Bird feeders may sustain feral Rose-ringed parakeets (Psittacula krameri) in temperate Europe. Wildl Biol 17:248–252CrossRefGoogle Scholar
  14. Cramp S, Perrins SM (1993) Handbook of the birds of Europe, the Middle East, and North Africa. Flycatchers to Shrikes, vol 7, p 242Google Scholar
  15. Cramp S, Brooks DJ, Perrins SM (1994) Handbook of the birds of Europe, the Middle East, and North Africa. Crows to Finches, vol 8Google Scholar
  16. DAISIE (Delivering Alien Invasive Species in Europe) European Invasive Alien Species Gateway 2008. Psittacula krameri.
  17. Dawson A, Ball GF, Bentley GE, King VM (2001) Photoperiodic control of seasonality in birds. J Biol Rhythms 16:365–380CrossRefPubMedGoogle Scholar
  18. Dodaro G, Battista C (2014) Rose -ringed parakeet (Psittacula krameri) and starling (Sturnus vulgaris) syntopics in a Mediterranean urban park: evidence for competition in nest-site selection? Belg J Zool 144:5–14Google Scholar
  19. Edelaar P, Avery ML, Carrete M, Gonçalves da Silva A, Hobson EA, Roques S, Russello MA, Senar JC, Tella JL, Wright TF (2015) Shared genetic diversity across the global invasive range of the Monk parakeet suggests a common restricted geographic origin and the possibility of convergent selection. Mol Ecol 24:2164–2176CrossRefPubMedGoogle Scholar
  20. FERA (2010) Impact of ring-necked parakeets on native birds. Research project WC0732. Final report to DEFRA, United Kingdom.
  21. Franz D, Dietzen C (2016) Halsbandsittich Psittacula krameri (Scopoli, 1789). In: Dietzen C et al (eds) Die Vogelwelt von Rheinland-Pfalz. Band 3: Greifvögel bis Spechtvögel (Accipitriformes–Piciformes). Landau, Germany, pp 601–613Google Scholar
  22. Godoy O, Levine JM (2014) Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. Ecology 95:726–736CrossRefPubMedGoogle Scholar
  23. Gurvich DE, Díaz S, Tecco PA (2005) Plant invasions in undisturbed ecosystems: the triggering attribute approach. J Veg Sci 16:723–728CrossRefGoogle Scholar
  24. Hernández-Brito D, Carrete M, Ibáñez C, Popa-Lisseanu AG, Tella JL (2014) Crowding in the city: losing and winning competitors of an invasive bird. PLoS ONE 9:e100593CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jackson H, Groombridge JJ, Matthysen E, Prys-Jones R, Strubbe D, Tollington S (2015) Ancestral origins and invasion pathways in a globally invasive bird correlate with climate and influences from bird trade. Mol Ecol 24:4269–4285CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jeschke JM (2014) General hypotheses in invasion ecology. Divers Distrib 20:1229–1234CrossRefGoogle Scholar
  27. Juniper T, Parr M (1998) Parrots: a guide to the parrots of the world. Christopher Helm, LondonGoogle Scholar
  28. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204CrossRefPubMedGoogle Scholar
  29. Krishnaprasadan TN, Haase E, Kotak VC, Schmedemann R, Sharp PJ (1988) Environmental and hormonal factors in seasonal breeding in free-living male indian rose-ringed parakeets (Psittacula krameri). Horm Behav 22:488–496CrossRefPubMedGoogle Scholar
  30. Lambrechts MM, Visser ME (1999) Proximate aspects of the timing of the reproduction. In: Adams NJ, Slotow RH (eds) Proceeding of the 22th international ornithology congress, Durban. Birdlife South Africa, Johannesburg, pp 231–233Google Scholar
  31. Le Gros A, Samadi S, Zuccon D, Cornette R, Braun MP, Senar JC, Clergeau P (2016) Rapid morphological changes, admixture and invasive success in populations of Ring-necked parakeets (Psittacula krameri) established in Europe. Biol Invasions 18:1581–1598CrossRefGoogle Scholar
  32. Lowe S, Boudjelas S, Browne M, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. In: The Invasive Species Specialist Group (ISSG), a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), Aliens, December 2000, p 12Google Scholar
  33. Mack RN, Bazzaz FA, Clout M, Evans H, Lonsdale WM, Simberloff D (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  34. Maitra SK, Dey M (1992) Importance of photoperiods in determining temporal pattern of annual testicular events in Rose-ringed parakeet (Psittacula krameri). J Biol Rhythms 7:13–25CrossRefPubMedGoogle Scholar
  35. Menchetti M, Mori E (2014) Worldwide impact of alien parrots (Aves Psittaciformes) on native biodiversity and environment: a review. Ethol Ecol Evol 26:172–194CrossRefGoogle Scholar
  36. Orchan Y, Chiron F, Kark S, Shwartz A (2013) The complex interaction network among multiple invasive bird species in a cavity-nesting community. Biol Invasions 15:429–445CrossRefGoogle Scholar
  37. Oro D, Fowler MS, Genovart M, Martínez-Abraín A, Tavecchia G (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol Lett 16:1501–1514CrossRefPubMedGoogle Scholar
  38. Paini DR, Cook DC, De Barro PJ, Sheppard AW, Thomas MB, Worner SP (2016) Global threat to agriculture from invasive species. P Natl Acad Sci USA 113:7575–7579CrossRefGoogle Scholar
  39. Panicker KN (1980) Ecology of hole nesting birds. J Bombay Nat Hist Soc 75:1227–1237Google Scholar
  40. Pârâu LG, Albayrak T, Ancillotto L, Braun MP, Clergeau P, Franz D, Hernández-Brito D, Kleunen AV, Luna A, Menchetti M, Mori E, Le Louarn M, Schroeder J, Strubbe D, White RL, Wink M (2016) Rose-ringed Parakeet Psittacula krameri populations and numbers in Europe: a complete overview. Open Ornithol J 9:1–13CrossRefGoogle Scholar
  41. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol 13:1860–1872CrossRefGoogle Scholar
  42. Pearman PB, D’Amen M, Graham CH, Thuiller W, Zimmermann NE (2010) Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography 33:990–1003CrossRefGoogle Scholar
  43. Pollheimer M, Pollheimer J, Föger M, Pack I (2006) Vorkommen und entstandsentwicklung des Halsbandsittichs Psittacula krameri in Innsbruck/Tirol/Österreich 1978 bis 2006. Monticola 9:366–371Google Scholar
  44. Pyle P (2013) Evolutionary implications of synapomorphic wing-molt sequences among falcons (Falconiformes) and parrots (Psittaciformes). Condor 115:593–602CrossRefGoogle Scholar
  45. Robb GN, Bearhop S, Chamberlain DE, McDonald RA (2008) Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front Earth Sci 6:476–484Google Scholar
  46. Rötzer T, Chmielewski FM (2001) Phenological maps of Europe. Clim Res 18:249–257CrossRefGoogle Scholar
  47. Sailaja R, Haase E, Kotak VC, Schmedemann R, Sharp PJ (1988) Environmental, dietary, and hormonal factors in the regulation of seasonal breeding in free-living female indian rose-ringed parakeets (Psittacula krameri). Horm Behav 22:518–527CrossRefPubMedGoogle Scholar
  48. Sala OE, Armesto JJ, Berlow E, Bloomfield J, Chapin FS III, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  49. Sanz JJ (1998) Effects of geographic location and habitat on breeding parameters of Great Tits. Auk 115:1034–1051CrossRefGoogle Scholar
  50. Sanz-Aguilar A, Carrete M, Edelaar P, Potti J, Tella JL (2015) The empty temporal niche: breeding phenology differs between coexisting native and invasive birds. Biol Invasions 17:3275–3288CrossRefGoogle Scholar
  51. Scharlemann JPW (2001) Museum egg collections as stores of long-term phenological data. Int J Biometerol 45:208–211CrossRefGoogle Scholar
  52. Schürmann A (1981) Deutschland—deine Papageien. Kosmos 8:42–49Google Scholar
  53. Shwartz A, Butler CJ, Kark S, Matthysen E, Strubbe D (2009) The effect of enemy-release and climate conditions on invasive birds: a regional test using the rose-ringed parakeet (Psittacula krameri) as a case study. Divers Distrib 15:310–318CrossRefGoogle Scholar
  54. Strubbe D, Matthysen E (2009a) Establishment success of invasive ring-necked and monk parakeets in Europe. J Biogeogr 36:2264–2278CrossRefGoogle Scholar
  55. Strubbe D, Matthysen E (2009b) Experimental evidence for nest-site competition between invasive Ring-necked parakeets (Psittacula krameri) and native nuthatches (Sitta europaea). Biol Conserv 142:1588–1594CrossRefGoogle Scholar
  56. Strubbe D, Matthysen E (2011) A radiotelemetry study of habitat use by the exotic Ring-necked Parakeet Psittacula krameri in Belgium. Ibis 153:180–184CrossRefGoogle Scholar
  57. Strubbe D, Jackson H, Groombridge J, Matthysen E (2015) Invasion success of a global avian invader is explained by within-taxon niche structure and association with humans in the native range. Divers Distrib 21:675–685CrossRefGoogle Scholar
  58. Temara K, Arnhem R (1996) Perruches à collier (Psittacula krameri) victimes des conditions climatiques en region Bruxelloise. Aves 33:128–129Google Scholar
  59. Thabethe V, Brown M, Downs CT, Hart LA, Thompson LJ (2013) Seasonal effects on the thermoregulation of invasive rose-ringed parakeets (Psittacula krameri). J Therm Biol 38:553–559CrossRefGoogle Scholar
  60. Thomas DW, Blondel J, Lambrechts MM, Perret P, Speakman JR (2001) Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science 291:2598–2600CrossRefPubMedGoogle Scholar
  61. Verhulst S, Nilsson J-Å (2008) The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Phil Trans R Soc B 363:399–410CrossRefPubMedGoogle Scholar
  62. Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478Google Scholar
  63. Wolkovich EM, Cleland EE (2010) The phenology of plant invasions: a community ecology perspective. Front Ecol Environ 9:287–294CrossRefGoogle Scholar
  64. Zingel D (1997) Zum Verhalten von Halsbandsittich und Alexandersittich Psittacula krameri und Psittacula eupatria im Schlosspark Wiesbaden-Biebrich und in ihren Heimatländern. Ornithologischen Mitteilungen 49:143–165Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Alvaro Luna
    • 1
    • 2
  • Detlev Franz
    • 3
  • Diederik Strubbe
    • 4
    • 5
    • 6
  • Assaf Shwartz
    • 7
  • Michael P. Braun
    • 8
  • Dailos Hernández-Brito
    • 1
  • Yariv Malihi
    • 9
  • Asaf Kaplan
    • 9
  • Emiliano Mori
    • 10
  • Mattia Menchetti
    • 11
  • Chris A. M. van Turnhout
    • 12
    • 13
  • Dave Parrott
    • 14
  • Frank-M. Chmielewski
    • 15
  • Pim Edelaar
    • 1
    Email author
  1. 1.Department Molecular BiologyUniversity Pablo de OlavideSevilleSpain
  2. 2.Department of Conservation BiologyEstación Biológica de DoñanaSevilleSpain
  3. 3.WackernheimGermany
  4. 4.Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
  5. 5.Evolutionary Ecology GroupUniversity of AntwerpAntwerpBelgium
  6. 6.Terrestrial Ecology UnitGhent UniversityGhentBelgium
  7. 7.Faculty of Architecture and Town PlainingTechnionHaifaIsrael
  8. 8.Department of Biology, Institute of Pharmacy and Molecular BiotechnologyUniversity of HeidelbergHeidelbergGermany
  9. 9.Israel Nature and Park AuthorityRosh HaayinIsrael
  10. 10.Dipartimento di Scienze della VitaUniversità degli Studi di SienaSienaItaly
  11. 11.Department of BiologyUniversity of FlorenceFlorenceItaly
  12. 12.Sovon Dutch Centre for Field OrnithologyNijmegenThe Netherlands
  13. 13.Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
  14. 14.National Wildlife Management CentreAnimal and Plant Health AgencyYorkUK
  15. 15.Albrecht Daniel Thaer-InstituteHumboldt-University of BerlinBerlinGermany

Personalised recommendations