Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges

Abstract

Inland aquatic ecosystems are vulnerable to both climate change and biological invasion at broad spatial scales. The aim of this study was to establish the current and future potential distribution of three invasive plant taxa, Egeria densa, Myriophyllum aquaticum and Ludwigia spp., in their native and exotic ranges. We used species distribution models (SDMs), with nine different algorithms and three global circulation models, and we restricted the suitability maps to cells containing aquatic ecosystems. The current bioclimatic range of the taxa was predicted to represent 6.6–12.3% of their suitable habitats at global scale, with a lot of variations between continents. In Europe and North America, their invasive ranges are predicted to increase up to two fold by 2070 with the highest gas emission scenario. Suitable new areas will mainly be located to the north of their current range. In other continents where they are exotic and in their native range (South America), the surface areas of suitable locations are predicted to decrease with climate change, especially for Ludwigia spp. in South America (down to −55% by 2070 with RCP 8.5 scenario). This study allows to identify areas vulnerable to ongoing invasions by aquatic plant species and thus could help the prioritisation of monitoring and management, as well as contribute to the public awareness regarding biological invasions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alahuhta J, Heino J, Luoto M (2011) Climate change and the future distributions of aquatic macrophytes across boreal catchments. J Biogeogr 38:383–393. doi:10.1111/j.1365-2699.2010.02412.x

    Article  Google Scholar 

  2. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. doi:10.1016/j.tree.2006.09.010

    Article  PubMed  Google Scholar 

  3. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338. doi:10.1111/j.2041-210X.2011.00172.x

    Article  Google Scholar 

  4. Bellard C, Thuiller W, Leroy B et al (2013) Will climate change promote future invasions? Glob Chang Biol 19:3740–3748. doi:10.1111/gcb.12344

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bellard C, Leroy B, Thuiller W et al (2016) Major drivers of invasion risks throughout the world. Ecosphere 7:1–14. doi:10.1002/ecs2.1241

    Article  Google Scholar 

  6. Bornette G, Puijalon S (2010) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14. doi:10.1007/s00027-010-0162-7

    Article  Google Scholar 

  7. Bradshaw CJA, Leroy B, Bellard C et al (2016) Massive yet grossly underestimated costs of invasive insects. Nat Commun. doi:10.1038/ncomms12986

    Google Scholar 

  8. Breiman L (2001) Random forests. Mach Learn 45:5–32. doi:10.1023/A:1010933404324

    Article  Google Scholar 

  9. Breiman L, Friedman JH, Olshean RA, Stone CJ (1984) Classification and regression trees. Chapman and Hall, London

    Google Scholar 

  10. Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589. doi:10.1098/rsbl.2008.0254

    Article  PubMed  PubMed Central  Google Scholar 

  11. Broennimann O, Treier UA, Müller-Schärer H et al (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709. doi:10.1111/j.1461-0248.2007.01060.x

    CAS  Article  PubMed  Google Scholar 

  12. Buisson L, Thuiller W, Casajus N et al (2010) Uncertainty in ensemble forecasting of species distribution. Glob Chang Biol 16:1145–1157. doi:10.1111/j.1365-2486.2009.02000.x

    Article  Google Scholar 

  13. Carey MP, Sethi SA, Larsen SJ, Rich CF (2016) A primer on potential impacts, management priorities, and future directions for Elodea spp. in high latitude systems: learning from the Alaskan experience. Hydrobiologia 777:1–19. doi:10.1007/s10750-016-2767-x

    Article  Google Scholar 

  14. Collins M, Tett SFB, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 17:61–81. doi:10.1007/s003820000094

    Article  Google Scholar 

  15. Dandelot S, Verlaque R, Dutartre A, Cazaubon A (2005) Ecological, dynamic and taxonomic problems due to Ludwigia (Onagraceae) in France. Hydrobiologia 551:131–136. doi:10.1007/s10750-005-4455-0

    Article  Google Scholar 

  16. Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi:10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  17. Ebeling SK, Welk E, Auge H, Bruelheide H (2008) Predicting the spread of an invasive plant: combining experiments and ecological niche model. Ecography (Cop) 31:709–719. doi:10.1111/j.1600-0587.2008.05470.x

    Article  Google Scholar 

  18. Elith J, Ferrier S, Huettmann F, Leathwick J (2005) The evaluation strip: a new and robust method for plotting predicted responses from species distribution models. Ecol Model 186:280–289. doi:10.1016/j.ecolmodel.2004.12.007

    Article  Google Scholar 

  19. Feijoó C, García ME, Momo F, Toja J (2002) Nutrient absorption by the submerged macrophyte Egeria densa Planch.: effect of ammonium and phosphorus availability in the water colum on growth and nutrient uptake. Limnetica 21:93–104

    Google Scholar 

  20. Finch JM, Samways MJ, Hill TR et al (2006) Application of predictive distribution modelling to invertebrates: Odonata in South Africa. Biodivers Conserv 15:4239–4251. doi:10.1007/s10531-005-3577-z

    Article  Google Scholar 

  21. Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Article  Google Scholar 

  22. Gallardo B, Aldridge DC (2013) The “dirty dozen”: socio-economic factors amplify the invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland. J Appl Ecol 50:757–766. doi:10.1111/1365-2664.12079

    Article  Google Scholar 

  23. Gallien L, Douzet R, Pratte S et al (2012) Invasive species distribution models—how violating the equilibrium. Glob Ecol Biogeogr 21:1126–1136. doi:10.1111/j.1466-8238.2012.00768.x

    Article  Google Scholar 

  24. Gent PR, Danabasoglu G, Donner LJ et al (2011) The community climate system model version 4. J Clim 24:4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  25. Getsinger KD, Dillon CR (1984) Quiescence, growth and senescence of Egeria densa in Lake Marion. Aquat Bot 20:329–338. doi:10.1016/0304-3770(84)90096-2

    Article  Google Scholar 

  26. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  27. Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. doi:10.1111/ele.12189

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  29. Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270. doi:10.2307/2290989

    Article  Google Scholar 

  30. Heikkinen R, Leikola N, Fronzek S et al (2009) Predicting distribution patterns and recent northward range shift of an invasive aquatic plant: Elodea canadensis in Europe. BioRisk 2:1–32. doi:10.3897/biorisk.2.4

    Article  Google Scholar 

  31. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  32. Hussner A (2010) Growth response and root system development of the invasive Ludwigia grandiflora and Ludwigia peploides to nutrient availability and water level. Fundam Appl Limnol/Arch Hydrobiol 177:189–196. doi:10.1127/1863-9135/2010/0177-0189

    Article  Google Scholar 

  33. Hussner A (2012) Alien aquatic plant species in European countries. Weed Res 52:297–306. doi:10.1111/j.1365-3180.2012.00926.x

    Article  Google Scholar 

  34. Hussner A, Champion PD (2011) Myriophyllum aquaticum (Vell.) Verdcourt (parrot feather). In: Francis RA (ed) A Handbook of global freshwater invasive species. Routledge, New York, p 456

    Google Scholar 

  35. Hussner A, Meyer C, Busch J (2009) The influence of water level and nutrient availability on growth and root system development of Myriophyllum aquaticum. Weed Res 49:73–80

    CAS  Article  Google Scholar 

  36. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge

    Google Scholar 

  37. Jaccard P (1901) Distribution de la flore alpine dans le Bassin des Drouces et dans quelques regions voisines. Bull la Société Vaudoise des Sci Nat 37:241–272

    Google Scholar 

  38. Kelly R, Leach K, Cameron A et al (2014) Combining global climate and regional landscape models to improve prediction of invasion risk. Divers Distrib 20:884–894. doi:10.1111/ddi.12194

    Article  Google Scholar 

  39. Kriticos DJ, Sutherst RW, Brown JR et al (2003) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J Appl Ecol 40:111–124

    Article  Google Scholar 

  40. Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22. doi:10.1016/j.jhydrol.2004.03.028

    Article  Google Scholar 

  41. Leroy B, Paschetta M, Canard A et al (2013) First assessment of effects of global change on threatened spiders: potential impacts on Dolomedes plantarius (Clerck) and its conservation plans. Biol Conserv 161:155–163. doi:10.1016/j.biocon.2013.03.022

    Article  Google Scholar 

  42. Li W (2014) Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants. Aquat Bot 118:62–70. doi:10.1016/j.aquabot.2014.07.008

    Article  Google Scholar 

  43. Li W, Guo Q (2013) How to assess the prediction accuracy of species presence–absence models without absence data? Ecography (Cop) 36:788–799. doi:10.1111/j.1600-0587.2013.07585.x

    Article  Google Scholar 

  44. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop) 28:385–393. doi:10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  45. Lowe S, Browne M, Boudjelas S, De Poorter M (2004) 100 of the world’s worst invasive alien species a selection from the Global Invasive Species Database. Invasive Species Specialist Group, Species Survival Commission, World Conservation Union (IUCN)

  46. Mainka SA, Howard GW (2010) Climate change and invasive species: double jeopardy. Integr Zool 5:102–111. doi:10.1111/j.1749-4877.2010.00193.x

    Article  PubMed  Google Scholar 

  47. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Google Scholar 

  48. Peterson AT, Papes M, Kluza DA (2003) Predicting the potential invasive distributions of four alien plant species in North America. Weed Sci 51:863–868

    CAS  Article  Google Scholar 

  49. Peterson AT, Stewart A, Mohamed KI, Araújo MB (2008) Shifting global invasive potential of European plants with climate change. PLoS ONE. doi:10.1371/journal.pone.0002441

    Google Scholar 

  50. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  51. Qin Z, DiTommaso A, Wu RS, Huang HY (2014) Potential distribution of two Ambrosia species in China under projected climate change. Weed Res 54:520–531. doi:10.1111/wre.12100

    Article  Google Scholar 

  52. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  53. Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181

    Google Scholar 

  54. Ripley BD (1996) Neural networks and pattern recognition. Cambridge University, Cambridge

    Google Scholar 

  55. Ruaux B, Greulich S, Haury J, Berton J-P (2009) Sexual reproduction of two alien invasive Ludwigia (Onagraceae) on the middle Loire River, France. Aquat Bot 90:143–148. doi:10.1016/j.aquabot.2008.08.003

    Article  Google Scholar 

  56. Santamaría L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol 23:137–154. doi:10.1016/S1146-609X(02)01146-3

    Article  Google Scholar 

  57. Stephens PA, Mason LR, Green RE et al (2016) Consistent response of bird populations to climate change on two continents. Science (80-) 352:84–87. doi:10.1126/science.aac4858

    CAS  Article  Google Scholar 

  58. Stiers I, Crohain N, Josens G, Triest L (2011) Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. Biol Invasions 13:2715–2726. doi:10.1007/s10530-011-9942-9

    Article  Google Scholar 

  59. Thalmann DJK, Kikodze D, Khutsishvili M et al (2015) Areas of high conservation value in Georgia: present and future threats by invasive alien plants. Biol Invasions 17:1041–1054. doi:10.1007/s10530-014-0774-2

    Article  Google Scholar 

  60. Thouvenot L, Haury J, Thiebaut G (2013a) A success story: water primroses, aquatic plant pests. Aquat Conserv Mar Freshw Ecosyst 23:790–803

    Google Scholar 

  61. Thouvenot L, Puech C, Martinez L et al (2013b) Strategies of the invasive macrophyte Ludwigia grandiflora in its introduced range: competition, facilitation or coexistence with native and exotic species? Aquat Bot 107:8–16. doi:10.1016/j.aquabot.2013.01.003

    Article  Google Scholar 

  62. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography (Cop) 32:369–373. doi:10.1111/j.1600-0587.2008.05742.x

    Article  Google Scholar 

  63. Watts G, Battarbee RW, Bloomfield JP et al (2015) Climate change and water in the UK—past changes and future prospects. Prog Phys Geogr 39:6–28. doi:10.1177/0309133314542957

    Article  Google Scholar 

  64. Whitehead PG, Wilby RL, Battarbee RW et al (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J 54:101–123. doi:10.1623/hysj.54.1.101

    Article  Google Scholar 

  65. Yarrow M, Marin VH, Finlayson M et al (2009) The ecology of Egeria densa Planchon (Liliopsida: Alismatales): a wetland ecosystem engineer? Rev Chil Hist Nat 82:299–313

    Article  Google Scholar 

  66. Yukimoto S, Adachi Y, Hosaka M et al (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3. J Meteorol Soc Jpn 90A:23–64. doi:10.2151/jmsj.2012-A02

    Article  Google Scholar 

  67. Zhang C, Boyle KJ (2010) The effect of an aquatic invasive species (Eurasian watermilfoil) on lakefront property values. Ecol Econ 70:394–404. doi:10.1016/j.ecolecon.2010.09.011

    Article  Google Scholar 

Download references

Acknowledgements

We kindly thank Márcio José Silveira for providing the occurrences of the studied taxa in Brazil, and Aldyth Nys for the English editing of the manuscript. This work was supported by a Ph.D. fellowship from the French Ministry for Higher Education and Research to MG. We would like to warmly thank the two reviewers who evaluated and contributed to improve a previous version of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Morgane Gillard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3402 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gillard, M., Thiébaut, G., Deleu, C. et al. Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biol Invasions 19, 2159–2170 (2017). https://doi.org/10.1007/s10530-017-1428-y

Download citation

Keywords

  • Brazilian waterweed
  • Climate change
  • Parrot feather
  • RCP scenarios
  • Species distribution models
  • Water primroses