DNA barcoding significantly improves resolution of invasive lionfish diet in the Northern Gulf of Mexico

A Correction to this article was published on 03 July 2018

This article has been updated

Abstract

Invasive Indo-Pacific red lionfish (Pterois volitans) have become well-established residents within reef communities across the western Atlantic Ocean where they pose substantial threats to native fish communities and reef ecosystems. Species-specific identification of prey is necessary to elucidate predator–prey interactions, but can be challenging with traditional visual identification methods given prey are often highly digested, thus not identifiable visually. To supplement visual diet analysis of lionfish (n = 934) sampled in the northern Gulf of Mexico, we applied DNA barcoding to identify otherwise unidentifiable fish prey (n = 696) via amplification of the cytochrome c oxidase subunit I (COI) of the mitochondrial genome. Barcoding nearly doubled the number of identifiable fish prey, thereby greatly enhancing our ability to describe lionfish diet. Thirty-three fish prey species were identified via barcoding, twenty-four of which were not previously detected by traditional methods. Some exploited reef fishes were newly reported (e.g., red snapper, Lutjanus campechanus) or found to constitute higher proportions of lionfish diet than previously reported (e.g., vermilion snapper, Rhomboplites aurorubens). Barcoding added a significant amount of new dietary information, and we observed the highest prey diversity reported to date for invasive lionfish. Potential cannibalism on juveniles also was identified via DNA barcoding, with the highest incidence corresponding to high lionfish densities, thus suggesting density-dependent prey demand may have driven this response. Overall, DNA barcoding greatly enhanced our ability to describe invasive lionfish diet in this study, suggesting that even studies with relatively large diet sample sizes could benefit from barcoding analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 03 July 2018

    In the original publication, the Acknowledgements section has been published incorrectly. The corrected Acknowledgements is given in this correction:

References

  1. Aguilar-Perera A, Tuz-Sulub A (2010) Non-native, invasive red lionfish (Pterois volitans [Linnaeus, 1758]: Scorpaenidae), is first recorded in the southern Gulf of Mexico, off the northern Yucatan Peninsula, Mexico. Aquat Invasions 5:S9–S12

    Article  Google Scholar 

  2. Ahrenholz DW, Morris JA Jr (2011) Larval duration of the lionfish, Pterois volitans along the Bahamian Archipelago. Environ Biol Fish 88(4):305–309

    Article  Google Scholar 

  3. Albins MA, Lyons PJ (2012) Invasive red lionfish Pterois volitans blow directed jets of water at prey fish. Mar Ecol Prog Ser 448:1–5

    Article  Google Scholar 

  4. Bailey HK, Cowan JH Jr, Shipp RL (2001) Experimental evaluation of potential effects of habitat size and presence of conspecifics on habitat association by young-of-the-year red snapper. Gulf Mexico Sci 19:119–131

    Article  Google Scholar 

  5. Betancur-R R, Hines A, Acero AP, Orti G, Wilbur AE, Freshwater DW (2011) Reconstructing the lionfish invasion: insights into Greater Caribbean biogeography. J Biogeog 38(7):1281–1293

    Article  Google Scholar 

  6. Byron D, Heck KL Jr, Kennedy MA (2014) Presence of juvenile lionfish in a northern Gulf of Mexico nursery habitat. Gulf Mexico Sci 32:75–77

    Article  Google Scholar 

  7. Carreon-Martinez L, Johnson TB, Ludsin SA, Heath DD (2011) Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. J Fish Biol 78(4):1170–1182

    Article  PubMed  CAS  Google Scholar 

  8. Caut S, Angulo E, Courchamp F (2008) Dietary shift of an invasive predator: rats, seabirds and sea turtles. J Appl Ecol 45:428–437. doi:10.1111/j.1365-2664.2007.01438.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chagaris D, Binion S, Bodanoff A, Dahl K, Granneman J, Harris H, Mohan J, Rudd M, Swenarton M, Ahrens, R, Patterson W, Morris J, Allen M An ecosystem-based approach to evaluating impacts and management of invasive lionfish. AFS Fish (in press)

  10. Chagaris D, Binion S, Bodanoff A, Dahl K, Granneman J, Harris H, Mohan J, Rudd M, Swenarton M, Ahrens R, Allen M, Morris J, Patterson W (2015) Modeling lionfish management strategies on the West Florida Shelf: workshop summary and results. University of Florida, Gainesville, p 31

    Google Scholar 

  11. Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PD (2007) DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Mol Ecol Notes 7(2):184–190

    Article  CAS  Google Scholar 

  12. Clarke KR, Gorley RN (2006) PRIMER version 6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  13. Collis K, Roby DD, Craig DP, Adamany S, Adkins JY, Lyons DE (2002) Colony size and diet composition of piscivorous waterbirds on the lower Columbia River: implications for losses of juvenile salmonids to avian predation. T Am Fish Soc 131(3):537–550

    Article  Google Scholar 

  14. Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85(10):2717–2727

    Article  Google Scholar 

  15. Côté IM, Green SJ, Hixon MA (2013a) Predatory fish invaders: insights from Indo-Pacific lionfish in the western Atlantic and Caribbean. Biol Conserv 164:50–61

    Article  Google Scholar 

  16. Côté IM, Green SJ, Morris JA Jr, Akins JL, Steinke D (2013b) Diet richness of invasive Indo-Pacific lionfish revealed by DNA barcoding. Mar Ecol Prog Ser 472:249–256

    Article  Google Scholar 

  17. Cure K, Benkwitt CE, Kindinger TL, Pickering EA, Pusack TJ, McIlwain JL, Hixon MA (2012) Comparative behavior of red lionfish Pterois volitans on native Pacific versus invaded Atlantic coral reefs. Mar Ecol Prog Ser 467:181–192

    Article  Google Scholar 

  18. Dahl KA, Patterson WF III (2014) Habitat-specific density and diet of rapidly expanding invasive Red Lionfish, Pterois volitans, populations in the northern Gulf of Mexico. PLoS ONE 9(8):e105852

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dahl KA, Patterson WF III (2017) DNA barcoding of invasive lionfish diet in the northern Gulf of Mexico. Dataset distributed by: Gulf of Mexico research initiative information and data cooperative (GRIID-C). University of Florida. Available from: UDI: R4.x267.000:0026

  20. Dahl KA, Patterson WF III, Snyder RA (2016) Experimental assessment of lionfish removals to mitigate reef fish community shifts on northern Gulf of Mexico artificial reefs. Mar Ecol Prog Ser 558:207–221

    Article  Google Scholar 

  21. Dance MA, Patterson WF III, Addis DT (2011) Fish community and trophic structure of reef fishes in the northeastern Gulf of Mexico. B Mar Sci 87:301–324

    Article  Google Scholar 

  22. Darling ES, Green SJ, O’Leary JK, Côté IM (2011) Indo-Pacific lionfish are larger and more abundant on invaded reefs: a comparison of Kenyan and Bahamian lionfish populations. Biol Invasions 13:2045–2051

    Article  Google Scholar 

  23. Dawnay N, Ogden R, McEwing R, Carvalho GR, Thorpe RS (2007) Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Sci Int 173(1):1–6

    Article  PubMed  CAS  Google Scholar 

  24. De Barba M, Miquel C, Boyer F, Mercier C, Rioux D, Coissac E, Taberlet P (2014) DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol Ecol Res 14(2):306–323

    Article  CAS  Google Scholar 

  25. Fishelson L (1997) Experiments and observations on food consumption, growth and starvation in Dendrochirus brachypterus and Pterois volitans (Pteroinae Scorpaenidae). Environ Biol Fish 50(4):391–403

    Article  Google Scholar 

  26. Fogg AQ, Hoffmayer ER, Driggers WB III, Campbell MD, Pellegrin GJ, Stein W (2013) Distribution and length frequency of invasive lionfish (Pterois sp.) in the northern Gulf of Mexico. Gulf Caribb Res 25:111–115

    Article  Google Scholar 

  27. Gonzalez JM, Portillo MC, Belda-Ferre P, Mira A (2012) Amplification by PCR artificially reduces the proportion of the rare biosphere in microbial communities. PLoS ONE 7(1):e29973. doi:10.1371/journal.pone.0029973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Green SJ, Côté IM (2014) Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities. J Anim Ecol 83(6):1451–1460

    Article  PubMed  Google Scholar 

  29. Green SJ, Akins JL, Côté IM (2011) Foraging behaviour and prey consumption in the Indo-Pacific lionfish on Bahamian coral reefs. Mar Ecol Prog Ser 433:159–167

    Article  Google Scholar 

  30. Grosholz ED, Ruiz GM, Dean CA, Shirley KA, Maron JL et al (2000) The impacts of a nonindigenous marine predator in a California bay. Ecology 81:1206–1224

    Article  Google Scholar 

  31. Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Res 11(4):591–611

    Article  CAS  Google Scholar 

  32. Hackerott S, Valdivia A, Green SJ, Côté IM, Cox CE (2013) Native predators do not influence invasion success of Pacific lionfish on Caribbean reefs. PLoS ONE 8(7):e68259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hamner RM, Freshwater DW, Whitfield PE (2007) Mitochondrial cytochrome b analysis reveals two invasive lionfish species with strong founder effects in the western Atlantic. J Fish Biol 71(sb):214-22

  34. Handy SM, Deeds JR, Ivanova NV, Herbert PDN, Hanner RH, Ormos A, Weigt LA, Moore MM, Yancy HF (2011) A single laboratory validated method for the generation of DNA barcodes for the identification of fish for regulatory compliance. J AOAC Int 94:201–209

    PubMed  CAS  Google Scholar 

  35. Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W (2003) Ten species in one: dNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. P Natl Acad Sci USA 101(41):14812–14817

    Article  Google Scholar 

  36. Hixon MA, Carr MH (1997) Synergistic predation, density dependence and population regulation in marine fish. Science 277:946–949

    Article  CAS  Google Scholar 

  37. Hoese HD, Moore RH (1998) Fishes of the Gulf of Mexico, 2nd edn. College Station, Texas

    Google Scholar 

  38. Hornstra HM, Herrel A, Montgomery WL (2004) Gas bladder movement in lionfishes: a novel mechanism for control of pitch. J Morphol 260:299–300

    Google Scholar 

  39. Hyslop EJ (1980) Stomach contents analysis—a review of methods and their application. J Fish Biol 17(4):411–429

    Article  Google Scholar 

  40. Imamura H, Yabe M (1996) Larval record of a red firefish, Pterois volitans, from northwestern Australia (Pisces: Scorpaeniformes). Bull Fac Fish-Hokkaido Univ 47:41–46

    Google Scholar 

  41. Ivanova NV, Zemlak TS, Hanner R, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548

    Article  CAS  Google Scholar 

  42. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kells V, Carpenter K (2011) A field guide to coastal fishes: from Maine to Texas. Baltimore, Maryland

    Google Scholar 

  44. Koskinen MT, Piironen J (2000) The one that did not get away: individual assignment using microsatellite data detects a case of fishing competition fraud. Proc R Soc Lond B Biol Sci 267(1453):1699–1704

    Article  Google Scholar 

  45. Legler ND, Johnson TB, Heath DD, Ludsin SA (2010) Water temperature and prey size effects on the rate of digestion of larval and early juvenile fish. T Am Fish Soc 139(3):868–875

    Article  Google Scholar 

  46. Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13:1855–1868

    Article  Google Scholar 

  47. McDonald PS, Jensen GC, Armstrong DA (2001) The competitive and predatory impacts of the nonindigenous crab Carcinus maenas (L.) on early benthic phase Dungeness crab Cancer magister Dana. J Exp Mar Biol Ecol 258:39–54. doi:10.1016/S0022-0981(00)00344-0

    Article  PubMed  Google Scholar 

  48. Meusnier I, Singer GA, Landry JF, Hickey DA, Hebert PD, Hajibabaei M (2008) A universal DNA mini-barcode for biodiversity analysis. BMC Genom 9(1):214

    Article  CAS  Google Scholar 

  49. Morris JA Jr, Akins JL (2009) Feeding ecology of invasive lionfish (Pterois volitans) in the Bahamian archipelago. Environ Biol Fish 86(3):389–398

    Article  Google Scholar 

  50. Morris JA Jr, Whitfield PE (2009) Biology, ecology, control and management of the invasive Indo-Pacific lionfish: an integrated assessment. NOAA Technical Memorandum NOS NCCOS 99. p 57

  51. Muñoz RC, Currin CA, Whitfield PE (2011) Diet of invasive lionfish on hard bottom reefs of the Southeast USA: insights from stomach. Mar Ecol Prog Ser 432:181–193

    Article  Google Scholar 

  52. Nuttall MF, Johnston MA, Eckert RJ, Embesi JA, Hickerson EL (2014) Lionfish (Pterois volitans [Linnaeus, 1758] and P. miles [Bennett, 1828]) records within mesophotic depth ranges on natural banks in the Northwestern Gulf of Mexico. BioInvasion Rec 3:111–115

    Article  Google Scholar 

  53. Paine RT (1966) Food web complexity and species diversity. Am Nat 100(910):65–75

    Article  Google Scholar 

  54. Patterson WF III, Wilson CA, Bentley SJ, Cowan JH Jr, Henwood T, Allen YC, Dufrene TA (2005) Delineating juvenile red snapper habitat on the northern Gulf of Mexico continental shelf. Am Fish Soc Symp 41:277–288

    Google Scholar 

  55. Patterson WF III, Tarnecki JH, Addis DT, Barbieri LR (2014) Reef fish community structure at natural versus artificial reefs in the northern Gulf of Mexico. P Gulf Caribb Fish Ins 67:4–8

    Google Scholar 

  56. Ratnasingham S, Hebert P (2007) BOLD: the barcode of life data system. Mol Ecol Notes 7:355–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rilov G (2009) Predator–prey interactions of marine invaders. Springer, Berlin Heidelberg, pp 261–285

    Google Scholar 

  58. Robertson A, Garcia AC, Quintana HA, Smith TB II, Bernard F, Reale-Munroe K, Gulli JA, Olsen DA, Hooe-Rollman JI, Jester EL, Klimek BJ (2014) Invasive lionfish (Pterois volitans): a potential human health threat for ciguatera fish poisoning in tropical waters. Mar Drugs 12(1):88–97

    Article  CAS  Google Scholar 

  59. Rudolf VH (2008) Impact of cannibalism on predator-prey dynamics: size-structured interactions and apparent mutualism. Ecology 89(6):1650–1660

    Article  PubMed  Google Scholar 

  60. Schofield PJ (2010) Update on geographic spread of invasive lionfishes (Pterois volitans [Linnaeus, 1758] and P. miles [Bennett, 1828]) in the Western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico. Aquat Invasions 5:S117–S122

    Article  Google Scholar 

  61. Schofield PJ, Akins L, Gregoire-Lucente DR, Pawlitz RJ (2014) Invasive lionfish use a diversity of habitats in Florida: U.S. Geological Survey Fact Sheet 2014–3032, p 2, http://dx.doi.org/10.3133/fs20143032

  62. Schooley JD, Karam AP, Kesner BR, Marsh PC, Pacey CA, Thornbrugh DJ (2008) Detection of larval remains after consumption by fishes. T Am Fish Soc 37(4):1044–1049

    Article  Google Scholar 

  63. Toledo-Hernández C, Vélez-Zuazo X, Ruiz-Diaz CP, Patricio AR, Mège P, Navarro M, Sabat AM, Betancur-R R, Papa R (2014) Population ecology and genetics of the invasive lionfish in Puerto Rico. Aquat Invasions 9:227–237

    Article  Google Scholar 

  64. Valdez-Moreno M, Quintal-Lizama C, Gómez-Lozano R, del Carmen García-Rivas M (2012) Monitoring an alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean. PLoS ONE 7(6):e36636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Valdivia A, Bruno JF, Cox CE, Hackerott S, Green SJ (2014) Re-examining the relationship between invasive lionfish and native grouper in the Caribbean. PeerJ 2:e348

    Article  PubMed  PubMed Central  Google Scholar 

  66. Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24(2):110–117

    Article  PubMed  Google Scholar 

  67. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia’s fish species. Philos T Roy Sos B 360(1462):1847–1857

    Article  CAS  Google Scholar 

  68. Ward RD, Hanner R, Hebert PD (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74(2):329–356

    Article  PubMed  CAS  Google Scholar 

  69. Whitfield PE, Gardner T, Vives SP, Gilligan MR, Courtenay WR Jr, Ray GC, Hare JA (2002) Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser 235:289–297

    Article  Google Scholar 

  70. Workman I, Shah A, Foster D, Hataway B (2002) Habitat preferences and site fidelity of juvenile red snapper (Lutjanus campechanus). ICES J Mar Sci 59:S43–S50

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dalton Kennedy, Scott Bartel, Clint Retherford, Bryan Clark, Andy Ross, Anna Clark, Jeremy Porter, Michael Day and Kylie Gray for assistance acquiring lionfish samples for this study. We thank Lei Wang, Pearce Cooper, and Natalie Ortell for minor assistance with molecular equipment. We thank Joseph Tarnecki, Brian Klimek, Justin Lewis, Steve Garner, and Michael Norberg for assistance with the processing of whole lionfish. This research was made possible by a Grant from The Gulf of Mexico Research Initiative/C-IMAGE II and Mississippi Alabama SeaGrant (USM-GR03924-R-HCE-04-PD). Data are publicly available through the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org. Sequences are accessible through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/).

Author contributions

WFP and AR conceived and designed study; AR and ACO and KAD developed methodology; KAD conducted fieldwork; KAD generated sequencing data and molecular analyses under advice of AR and ACO; KAD and WFP analyzed data and performed statistical analyses; KAD wrote the manuscript; all co-authors provided review and editorial advice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kristen A. Dahl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dahl, K.A., Patterson, W.F., Robertson, A. et al. DNA barcoding significantly improves resolution of invasive lionfish diet in the Northern Gulf of Mexico. Biol Invasions 19, 1917–1933 (2017). https://doi.org/10.1007/s10530-017-1407-3

Download citation

Keywords

  • Red lionfish
  • Diet composition
  • COI MtDNA
  • Gulf of Mexico
  • Cannibalism