Skip to main content
Log in

Intra- and interspecific hybridization in invasive Siberian elm

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Hybridization creates unique allele combinations which can facilitate the evolution of invasiveness. Frequent interspecific hybridization between the Siberian elm, Ulmus pumila, and native elm species has been detected in the Midwestern United States, Italy and Spain. However, Ulmus pumila also occurs in the western United States and Argentina, regions where no native elm species capable of hybridizing with it occurs. We examined whether inter- or intraspecific hybridization could be detected in these regions. Nuclear markers and the program STRUCTURE helped detect interspecific hybridization and determine the population genetic structure in both the native and the two non-native ranges. Chloroplast markers identified sources of introduction into these two non-native ranges. No significant interspecific hybridization was detected between U. pumila and U. rubra in the western United States or between U. pumila and U. minor in Argentina and vice versa. However, the genetic findings supported the presence of intraspecific hybridization and high levels of genetic diversity in both non-native ranges. The evidence presented for intraspecific hybridization in the current study, combined with reports of interspecific hybridization from previous studies, identifies elm as a genus where both inter- and intraspecific hybridization may occur and help maintain high levels of genetic diversity potentially associated with invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott RJ, Brennan AC (2014) Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos Trans R Soc Lond B Biol Sci 369:20130346

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertolasi B, Leonarduzzi C, Piotti A, Leonardi S, Zago L, Gui L, Gorian F, Vanetti I, Binelli G (2015) A last stand in the Po valley: genetic structure and gene flow patterns in Ulmus minor and U. pumila. Ann Bot 115:683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair AC, Hufbauer RA (2010) Hybridization and invasion: one of North America’s most devastating invasive plants shows evidence for a history of interspecific hybridization. Evol Appl 3:40–51

    Article  PubMed  Google Scholar 

  • Bleeker W, Schmitz U, Ristow M (2007) Interspecific hybridisation between alien and native plant species in Germany and its consequences for native biodiversity. Biol Conserv 137:248–253

    Article  Google Scholar 

  • Brunet J, Zalapa JE, Peccori F, Santini A (2013) Hybridization and introgression between exotic Siberian elm, Ulmus pumila, and the native Field elm, U. minor, in Italy. Biol Invasions 15:2717–2730

    Article  Google Scholar 

  • Cabra-Rivas I, Castro-Díez P, Saldaña A (2015) Analysis of the riparian habitat invasion by three exotic species in Spain. Ecosistemas 24:18–28

    Article  Google Scholar 

  • Cogolludo-Agustín MÁ, Agúndez D, Gil L (2000) Identification of native and hybrid elms in Spain using isozyme gene markers. Heredity 85:157–166

    Article  PubMed  Google Scholar 

  • Collada C, Fuentes-Utrilla P, Gil L, Cervera MT (2004) Characterization of microsatellite loci in Ulmus minor Miller and cross-amplification in U. glabra Hudson and U. laevis Pall. Mol Ecol Notes 4:731–732

    Article  CAS  Google Scholar 

  • Cozzo D (1968) Concepto forestal de la naturalización de especies exóticas y su ocurrencia en Argentina. Rev For Argent 12:118–124

    Google Scholar 

  • Culley TM, Hardiman NA (2009) The role of intraspecific hybridization in the evolution of invasiveness: a case study of the ornamental pear tree Pyrus calleryana. Biol Invasions 11:1107–1119

    Article  Google Scholar 

  • Demaio P, Karlin U, Medina M (2015) Árboles nativos de Argentina. Tomo 1: Centro y Cuyo, 1st edn. Ecoval

  • Drábková L, Kirschner J, Vlček Č (2002) Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of Juncaceae. Plant Mol Biol Rep 20:161–175

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eliades N-G, Eliades DG (2009) Haplotype analysis: software for analysis of haplotypes data. Distributed by the authors, Forest Genetics and Forest Tree Breeding, Georg-August University Goettingen, Germany

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97:7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elowsky CG, Jordon-Thaden IE, Kaul RB (2013) A morphological analysis of a hybrid swarm of native Ulmus rubra Muhl. and introduced U. pumila L. (Ulmaceae) in southeastern Nebraska. Phytoneuron 44:1–23

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred form metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert KJ, Andrew RL, Bock DG, Franklin MT, Kane NC, Moore JS, Moyers BT, Renaut S, Rennison DJ, Veen T et al (2012) Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program Structure. Mol Ecol 21:4925–4930

    Article  PubMed  Google Scholar 

  • Hirsch H, Wypior C, von Wehrden H, Wesche K, Renison D, Hensen I (2012) Germination performance of native and non-native Ulmus pumila populations. NeoBiota 15:53–68

    Article  Google Scholar 

  • Hirsch H, Hensen I, Wesche K, Renison D, Wypior C, Hartmann M, von Wehrden H (2016) Non-native populations of an invasive tree outperform their native conspecifics. AoB Plants 8:plw071

    Article  PubMed  PubMed Central  Google Scholar 

  • Hovick SM, Whitney KD (2014) Hybridisation is associated with increased fecundity and size in invasive taxa: meta-analytic support for the hybridisation-invasion hypothesis. Ecol Lett 17:1464–1477

    Article  PubMed  PubMed Central  Google Scholar 

  • Hufbauer RA (2004) Population genetics of invasions: can we link neutral markers to management? Weed Technol 18:1522–1527

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Kartesz JT, The Biota of North America Program (BONAP; 2015) North American Plant Atlas. http://www.bonap.org/MapSwitchboard.html. Accessed 07 Dec 2016

  • Keim P, Paige KN, Whitham TG, Lark KG (1989) Genetic analysis of an interspecific hybrid swarm of Populus: occurrence of unidirectional introgression. Genetics 123:557–565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a cuban lizard. Nature 431:177–181

    Article  CAS  PubMed  Google Scholar 

  • Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14:415–424

    Article  CAS  PubMed  Google Scholar 

  • Kosman E, Leonard KJ (2007) Conceptual analysis of methods applied to assessment of diversity within and distance between populations with asexual or mixed mode of reproduction. New Phytol 174:683–696

    Article  PubMed  Google Scholar 

  • Lachmuth S, Durka W, Schurr FM (2010) The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of Senecio inaequidens. Mol Ecol 19:3952–3967

    Article  PubMed  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic diversity and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Roux J, Wieczorek AM (2009) Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management. Ann Appl Biol 154:1–17

    Article  Google Scholar 

  • Leopold DJ (1980) Chinese and Siberian elms. J Arboric 6:175–179

    Google Scholar 

  • Martin M (2008) Comparing invasive species to metastatic cancers inspires new insights for modelers. J Natl Cancer Inst 100:88–89

    Article  PubMed  Google Scholar 

  • Mazia CN, Chaneton EJ, Ghersa CM, Leon RJC (2001) Limits to tree species invasion in pampean grassland and forest plant communities. Oecologia 128:594–602

    Article  Google Scholar 

  • Meusel H, Jäger E, Weinert E (1965) Vergleichende Chorologie der zentraleuropäischen Flora. Teil I. Text und Kartenband. Fischer, Jena

    Google Scholar 

  • Milne RI, Abbott RJ (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Mol Ecol 9:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mittempergher L, Santini A (2004) The history of elm breeding. Investigación agraria. Sistemas y recursos forestales 13:161–177

    Google Scholar 

  • Moore G (1960) El cultivo de Ulmus pumila ofrece buenas perspectivas en la Argentina. Rev For Argent 4:77–81

    Google Scholar 

  • Neher EF, Roic LD (1972) Nota sobre la naturalización de especies arbóreas en las Sierras de Córdoba. Rev For Argent 16:123–125

    Google Scholar 

  • Nei M (1978) Molecular population genetics and evolution. Columbia University Press, New York

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poduje L (1972) Contribución al conocimiento del cultivo del olmo siberiano (Ulmus pumila var. arborea Litw.) en La Pampa. Rev For Argent 16:137–141

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powell W (1999) A low mutation rate for chloroplast microsatellites. Genetics 153:943–947

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Rieseberg IH, Kim S-C, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165

    Article  PubMed  Google Scholar 

  • Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242

    Article  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rosenthal DM, Ramakrishnan AP, Cruzan MB (2008) Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Mol Ecol 17:4657–4669

    Article  PubMed  Google Scholar 

  • Schachtel GA, Dinoor A, Herrmann A, Kosman E (2012) Comprehensive evaluation of virulence and resistance data: a new analysis tool. Plant Dis 96:1060–1063

    Article  Google Scholar 

  • Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11:1093–1105

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Todzia CA, Panero JL (1998) A new species of Ulmus (Ulmaceae) from southern Mexico and a synopsis of the species in Mexico. Brittonia 50:343–347

    Article  Google Scholar 

  • USDA, NRCS (2011) The PLANTS Database. National Plant Data Team, Greensboro. http://plants.usda.gov. Accessed 5 Oct 2011

  • Webb WE (1948) A report on Ulmus pumila in the Great Plains region of the United States. J For 46:274–278

    Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  CAS  PubMed  Google Scholar 

  • Wesche K, Walther D, von Wehrden H, Hensen I (2011) Trees in the desert: reproduction and genetic structure of fragmented Ulmus pumila forests in Mongolian drylands. Flora 206:91–99

    Article  Google Scholar 

  • Whiteley RE, Black-Samuelsson S, Clapham D (2003) Development of microsatellite markers for the European white elm (Ulmus laevis Pall.) and cross-species amplification within the genus Ulmus. Mol Ecol Res 3:598–600

    CAS  Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580

    Article  Google Scholar 

  • Williams DA, Overholt WA, Cuda JP, Hughes CR (2005) Chloroplast and microsatellite DNA diversities reveal the introduction history of Brazilian peppertree (Schinus terebinthifolius) in Florida. Mol Ecol 14:3643–3656

    Article  CAS  PubMed  Google Scholar 

  • Wu ZY, Raven PH, Hong DY (2003) Flora of China. Vol. 5 (Ulmaceae through Basellaceae). Science Press, Beijin, China and Missouri Botanical Garden Press, St. Louis, USA. http://www.efloras.org. Accessed on 20 Nov 2010

  • Zalapa JE, Brunet J, Guries RP (2008a) Genetic diversity and relationships among Dutch elm disease tolerant Ulmus pumila L. accessions from China. Genome 51:492–500

    Article  CAS  PubMed  Google Scholar 

  • Zalapa JE, Brunet J, Guries RP (2008b) Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl.) and cross-species amplification with Siberian elm (Ulmus pumila). Mol Ecol Resour 8:109–112

    Article  CAS  PubMed  Google Scholar 

  • Zalapa JE, Brunet J, Guries RP (2009) Patterns of hybridization and introgression between invasive Ulmus pumila (Ulmaceae) and native U. rubra. Am J Bot 96:1116–1128

    Article  CAS  PubMed  Google Scholar 

  • Zalapa JE, Brunet J, Guries RP (2010) The extent of hybridization and its impact on the genetic diversity and population structure of an invasive tree, Ulmus pumila (Ulmaceae). Evol Appl 3:157–168

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalba SM, Villamil CB (2002) Woody plant invasion in relictual grasslands. Biol Invasions 4:55–72

    Article  Google Scholar 

Download references

Acknowledgements

Al Schneider, S. Hegi, R. Peterson, R. Sivinski, J. Smith, T. Frates and B. King directed us to populations and provided hospitality during our field trip in the western United States. Ricardo Suarez collected leaf material in Argentina and Ximing Zhang, Zhenying Huang, B. Oyuntsetseg, L. Yakovchenko in Asia. Denny Walther provided samples from his former research and P. Gebauer, K. Reichel, V. Debus and U. Pietzarka provided samples of U. minor. We also thank A. Suchorukow for providing the sample from the Moscow State University herbarium. Birgit Müller, C. Wypior and E. Gustin contributed to the microsatellite lab work.

Funding

This work was funded by the “Graduiertenförderung des Landes Sachsen-Anhalts” and the DAAD to H. Hirsch, the National Science Foundation Minority Postdoctoral Fellowship to J.E. Zalapa (NSF award #0409651), the USDA-ARS to J. Brunet and the German Academic Exchange Service to M. Hartmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Hirsch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirsch, H., Brunet, J., Zalapa, J.E. et al. Intra- and interspecific hybridization in invasive Siberian elm. Biol Invasions 19, 1889–1904 (2017). https://doi.org/10.1007/s10530-017-1404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1404-6

Keywords

Navigation