Biological Invasions

, Volume 19, Issue 6, pp 1781–1794 | Cite as

Unraveling the historical prevalence of the invasive chytrid fungus in the Bolivian Andes: implications in recent amphibian declines

  • Patricia A. BurrowesEmail author
  • Ignacio De la Riva
Original Paper


We studied the historical prevalence of the invasive and pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) among amphibians from the Bolivian Andes. Our aim was also to determine its geographic pattern of dispersion, and a potential host taxonomic signature. We collected frog tissue samples from nine museum collections covering a period from 1863 to 2005 and from the field during 2009–2016. Bd was diagnosed via quantitative PCR in 599 individuals of 17 genera and 54 species. We found an overall Bd prevalence of 41% among 44 species tested. The first incidence of Bd was from a Telmatobius culeus in 1863; this is the earliest report of detection for this pathogen in the world. Results reveal a non-random historical and geographical pattern of Bd occurrence and amphibian declines that suggests the presence of two different invasive strains, an ancient endemic and a more recent introduction. Prevalence of Bd increased significantly by the mid-1990s, particularly in the cloud-forests, and this is coincident with the timing of drastic amphibian declines. In contrast, amphibians occurring in drier altiplano habitats have persisted in spite of Bd presence. We hypothesize that the early 1990s, and the cloud-forests in central Bolivia were the center of an epidemic surge of Bd that took its toll on many species, especially in the genus Telmatobius. Further sampling of cloud-forest species, and ongoing genetic studies of Bd isolates from Bolivia should help resolve the history of this invasive pathogen and test hypotheses on the differential response of endangered hosts.


Amphibians Batrachochytrium dendrobatidis Invasive pathogen 



This research was supported by Projects CGL2011-30393 and CGL2014-56160-P of the Spanish Government (PI, Ignacio De la Riva). We are thankful to J. Aparicio (CBF), A. Muñoz (MHNC), L. Aguirre (CBG), L. Gonzáles (MNK), M. Calvo (MNCN), J. Cabot and T. García-Díez (EBD), D. Frost and D. Kizirian (AMNH), R. M. Brown (KU), and J. M. Padial (CM), for allowing us to sample amphibians in the Museum collections that they curate. We also thank O. Jiménez-Robles (MNCN) for drawing the map of Bolivia, and former University of Puerto Rico students, A. R. González J. López and M. C. Martes for their help with laboratory work and in entering the data in a perfectly organized spreadsheet. A. Pessier kindly checked our histology preparations of Telmatobius culeus skin.

Supplementary material

10530_2017_1390_MOESM1_ESM.pdf (250 kb)
Supplementary material 1 (PDF 250 kb)
10530_2017_1390_MOESM2_ESM.pdf (63 kb)
Supplementary material 2 (PDF 62 kb)


  1. Aguayo R (2000) Ecología de la comunidad de anuros en dos pisos bioclimáticos del Parque Nacional Carrasco (Cochabamba-Bolivia). MS Thesis, Universidad Mayor de San Simón, CochabambaGoogle Scholar
  2. Bataille A, Fong JJ, Cha M, Wogan GOU, Baek HJ, Lee H, Min M-S, Waldman B (2013) Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Mol Ecol 22:4196–4209CrossRefPubMedGoogle Scholar
  3. Becker CG, Zamudio KR (2011) Tropical amphibian populations experience higher disease risk in natural habitats. Proc Natl Acad Sci (USA) 108(24):9893–9898CrossRefGoogle Scholar
  4. Becker CG, Loyola RD, Haddad CFB, Zamudio KR (2010) Integrating species life-history traits and patterns of deforestation in amphibian conservation planning. Divers Distrib 16(1):10–19CrossRefGoogle Scholar
  5. Bielby J, Cooper N, Cunningham AA, Garner TWJ, Purvis A (2008) Predicting susceptibility to future declines in the world’s frogs. Conserv Lett 1(2):82–90CrossRefGoogle Scholar
  6. Boyle DG, Boyle DB, Olsen V, Morgan JA, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ 60:141–148CrossRefPubMedGoogle Scholar
  7. Burrowes PA, Joglar RL, Green DE (2004) Potential causes of amphibian declines in Puerto Rico. Herpetologica 60(2):141–154CrossRefGoogle Scholar
  8. Burrowes PA, De la Riva I (2017) Detection of the amphibian chytrid fungus batrachochytrium dendrobatidis in museum specimens of andean aquatic birds: implications for pathogen dispersal. J Wildl Dis. doi: 10.7589/2016-04-074 PubMedGoogle Scholar
  9. Bustamante MR, Ron SR, Coloma LA (2005) Cambios en la diversidad en siete comunidades de anuros en los Andes de Ecuador. Biotropica 37:180–189CrossRefGoogle Scholar
  10. Cabrera S, López M, Tartarotti B (1997) Phytoplankton and zooplankton response to ultraviolet radiation in a high-altitude Andean lake: short-versus long-term effects. J Plankton Res 19(11):1565–1582CrossRefGoogle Scholar
  11. Catenazzi A (2011) Temperature constraint of elevational range of tropical amphibians: response to Forero-Medina. Conserv Biol 25:425–426 (author reply 426-7) CrossRefPubMedGoogle Scholar
  12. Catenazzi A, Lehr E, Rodríguez LO, Vredenburg VT (2010) Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the upper Manu National Park, southeastern Peru. Conserv Biol 25(2):382–391PubMedGoogle Scholar
  13. Catenazzi A, Lehr E, Vredenburg VT (2014) Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes. Conserv Biol 28:509–517CrossRefPubMedGoogle Scholar
  14. Cheng TL, Rovito SM, Wake DB, Vredenburg VT (2011) Coincident mass extirpation of Neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci (USA) 108:9502–9507CrossRefGoogle Scholar
  15. Collins JP, Crump ML (2009) Extinction in our times: global amphibian decline. Oxford University Press, New YorkGoogle Scholar
  16. Cortez C (2009) Anfibios del Valle de Zongo (La Paz, Bolivia): I. Evaluación del estado de conservación. Ecol Bol 44(2):109–120Google Scholar
  17. De la Riva I (2005) Bolivian frogs of the genus Telmatobius (Anura: Leptodactylidae): synopsis, taxonomic comments, and description of a new species. In: Lavilla EO, De la Riva I (eds) Studies on the Andean Frogs of the Genera Telmatobius and Batrachophrynus, Monografías de Herpetología, vol 7. Asociación Herpetológica Española, Valencia, Spain, pp 65–101Google Scholar
  18. De la Riva I (2007) Bolivian frogs of the genus Phrynopus, with the description of twelve new species (Anura: Brachycephalidae). Herpetol Monogr 21(1):241–277CrossRefGoogle Scholar
  19. De la Riva I, Burrowes PA (2011) Rapid assessment of the presence of Batrachochytrium dendrobatidis in Bolivian Andean frogs. Herpetol Rev 42:372–375Google Scholar
  20. De la Riva I, Lavilla EO (2008) Essay 9.2: Conservation status of the Andean frogs of the genera Telmatobius and Batrachophrynus. In: Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge R, Ramani P, Young BE (eds) Threatened Amphibians of the World, Lynx Ediciones, with IUCN—The World Conservation Union, Conservation International, and NatureServe, Barcelona, Spain, p 101Google Scholar
  21. De la Riva I, Reichle S (2014) Diversity and conservation of the amphibians of Bolivia. In: Heatwole H, Barrio-Amorós C, Wilkinson JW (eds) Status of decline of amphibians: Western Hemisphere. Amphibian biology. Chapter 13, Part 4 of Volume 9. Herpetology Monographs, vol 28, pp 46–65Google Scholar
  22. De la Riva I, Köhler J, Lötters S, Reichle S (2000) Ten years of research on Bolivian amphibians: updated checklist, distribution, taxonomic problems, literature and iconography. Rev Esp Herp 14:19–164Google Scholar
  23. De la Riva I, Trueb L, Duellman WE (2012) A new species of Telmatobius (Anura: Telmatobiidae) from montane forests of southern Peru, with a review of osteological features of the genus. S Am J Herpetol 7(2):91–109CrossRefGoogle Scholar
  24. Duellman WE, Trueb L (1994) Biology of amphibians. Johns Hopkins University Press, BaltimoreGoogle Scholar
  25. Farrer RA, Weinert LA, Bielby J et al (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc Natl Acad Sci USA 108:18732–18736CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fisher MC, Garner TW, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310CrossRefPubMedGoogle Scholar
  27. Frías-Álvarez P, Vredenburg VT, Familiar-López M, Longcore JE, González-Bernal E, Santos-Barrera G, Zambrano L, Parra-Olea G (2008) Chytridiomycosis survey in wild and captive mexican amphibians. EcoHealth 5:18–26CrossRefPubMedGoogle Scholar
  28. Garmyn A, Van Rooij P, Pasmans F, Hellebuyck T, Van Den Broeck W, Haesebrouck F, Martel A (2012) Waterfowl: potential environmental reservoirs of the chytrid fungus Batrachochytrium dendrobatidis. PLoS ONE 7:e35038CrossRefPubMedPubMedCentralGoogle Scholar
  29. Goka K, Yokoyama JUN, Une Y et al (2009) Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Mol Ecol 18:4757–4774CrossRefPubMedGoogle Scholar
  30. Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, Dalton A, Kriger K, Hero JM, Hines H, Phillott R, Campbell R, Marantelli G, Gleason F, Coiling A (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Organ 73:175–192CrossRefPubMedGoogle Scholar
  31. Ibisch PL (1996) Neotropische Epiphytendiversitat—das Beispiel Bolivien. Arch Naturw Diss (M. Galuder Verlag) 1:1–356Google Scholar
  32. James TY, Toledo LF, Rödder D, da Silva LD, Belasen AM, Betancourt-Román CM, Jenkinson TM, Lambertini C, Longo AV, Ruggeri J, Collins JP, Burrowes PA, Lips KR, Zamudio KR, Longcore JE (2015) Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research. Ecol Evol 5(18):4079–4097CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jenkinson T, Román B, Lambertini C, et al. (2016) Amphibian-killing chytrid in Brazil comprises both locally endemic and globally expanding populations. Mol Ecol 25:2978–2996CrossRefPubMedGoogle Scholar
  34. Johnson ML, Speare R (2003) Survival of Batrachochytrium dendrobatidis in water: quarantine and disease control implications. Emerg Infect Dis 9:922–925CrossRefPubMedPubMedCentralGoogle Scholar
  35. Köhler J (2000) Amphibian diversity in Bolivia: a study with special reference to montane forest regions. Bonn Zool Monogr 48:1–243Google Scholar
  36. Kolby JE, Padgett-Flohr GE, Field R (2010) Amphibian chytrid fungus Batrachochytrium dendrobatidis in Cusuco National Park, Honduras. Dis Aquat Organ 92:245–251CrossRefPubMedGoogle Scholar
  37. Kolby JE, Ramirez SD, Berger L et al (2015a) Presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) in rainwater suggests aerial dispersal is possible. Aerobiologia 31:411–419CrossRefGoogle Scholar
  38. Kolby JE, Ramirez SD, Berger L et al (2015b) Terrestrial dispersal and potential environmental transmission of the amphibian chytrid fungus (Batrachochytrium dendrobatidis). PLoS ONE 10:e0125386CrossRefPubMedPubMedCentralGoogle Scholar
  39. La Marca E, Lips KR, Lötters S, Puschendorf R, Ibáñez R, Rueda-Almonacid JV, Schulte R, Marty C, Castro F, Manzanilla-Puppo J, García-Pérez JE, Bolaños F, Chaves G, Pounds JA, Toral E, Young BE (2005) Catastrophic population declines and extinctions in neotropical harlequin frogs (Bufonidae: Atelopus). Biotropica 37:190–201CrossRefGoogle Scholar
  40. Lampo M, Rodríguez-Contreras A, La Marca E, Daszak P (2006) A chytridiomycosis epidemic and a severe dry season precede the disappearance of Atelopus species from the Venezuelan Andes. Herpetol J 16(4):395–402Google Scholar
  41. Lampo M, Sánchez D, Nicolás A, Márquez M, Nava-González F, García CZ, Rinaldi M, Rodríguez-Contreras A, León F, Han BA, Chacón-Ortiz A (2008) Batrachochytrium dendrobatidis in Venezuela. Herpetol Rev 39(4):449Google Scholar
  42. Laurance WF, McDonald KR, Speare R (1996) Epidemic disease and the catastrophic decline of Australian rainforest frogs. Conserv Biol 10:406–413CrossRefGoogle Scholar
  43. Lips KR (1998) Decline of a tropical montane amphibian fauna. Conserv Biol 12:106–117CrossRefGoogle Scholar
  44. Lips KR (1999) Mass mortality and population declines of Anurans at an upland site in Western Panama. Conserv Biol 13:117–125CrossRefGoogle Scholar
  45. Lips KR, Reeve JD, Witters LR (2003) Ecological traits predicting amphibian population declines in Central America. Conserv Biol 17(4):1078–1088CrossRefGoogle Scholar
  46. Lips KR, Mendelson JR III, Muñoz-Alonso A, Canseco-Márquez L, Mulcahy DG (2004) Amphibian population declines in montane southern Mexico: resurveys of historical localities. Biol Conserv 119(4):555–564CrossRefGoogle Scholar
  47. Lips KR, Burrowes PA, Mendelson JR III, Parra-Olea G (2005) Amphibian declines in Latin America: widespread population declines, extinctions, and impacts. Biotropica 37(2):163–165CrossRefGoogle Scholar
  48. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a neotropical amphibian community. Proc Natl Acad Sci USA 103:3165–3170CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lips KR, Diffendorfer J, Mendelson JR III, Sears MW (2008) Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biol 6(3):e72CrossRefPubMedPubMedCentralGoogle Scholar
  50. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227CrossRefGoogle Scholar
  51. Longo AV, Burrowes PA (2010) Persistence with chytridiomycosis does not assure survival of direct-developing frogs. EcoHealth 7(2):185–195CrossRefPubMedGoogle Scholar
  52. Longo AV, Burrowes PA, Joglar RL (2010) Seasonality of Batrachochytrium dendrobatidis infection in direct-developing frogs suggests a mechanism for persistence. Dis Aquat Organ 92:253–260CrossRefPubMedGoogle Scholar
  53. Lynch JD, Burrowes PA (1990) The frogs of the genus Eleutherodactylus (Family Leptodactylidae) at the La Planada Reserve in southwestern Colombia with descriptions of eight new species. Occup Pap Mus Nat Hist Univ 136:1–31Google Scholar
  54. Lynch JD, Grant T (1988) Dying frogs in western Colombia: catastrophe or trivial observation? Rev Acad Colomb Cienc 22:149–152Google Scholar
  55. Mendelson JR III, Brodie JRED, Malone JH, Acevedo ME, Baker MA, Smatresk NJ, Campbell JA (2004) Factors associated with the catastrophic decline of a cloudforest frog fauna in Guatemala. Rev Biol Trop 52(4):991–1000PubMedGoogle Scholar
  56. Menéndez-Guerrero PA, Graham CH (2013) Evaluating multiple causes of amphibian declines of Ecuador using geographical quantitative analyses. Ecography 36:756–769CrossRefGoogle Scholar
  57. Morehouse EA, James TY, Ganley AR et al (2003) Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol Ecol 12:395–403CrossRefPubMedGoogle Scholar
  58. Murray KA, Skerratt L, Speare R, McCallum H (2009) Impact and dynamics of disease in species threatened by the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Conserv Biol 23(5):1242–1252CrossRefPubMedGoogle Scholar
  59. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858CrossRefPubMedGoogle Scholar
  60. Piazena H (1996) The effect of altitude upon the solar UV-B and UV-A irradiance in the tropical Chilean Andes. Sol Energy 57(2):133–140CrossRefGoogle Scholar
  61. Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15CrossRefPubMedGoogle Scholar
  62. Pounds JA, Coloma LA (2008) Beware the lone killer. Nat Rep Clim Chang 2:57–59CrossRefGoogle Scholar
  63. Pounds JA, Crump ML (1994) Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conserv Biol 8:72–85CrossRefGoogle Scholar
  64. Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MP, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439(7073):161–167CrossRefPubMedGoogle Scholar
  65. Puschendorf R, Bolaños F (2006) Detection of Batrachochytrium dendrobatidis in Eleutherodactylus fitzingeri: effects of skin sample location and histologic stain. J Wildl Dis 42:301–306CrossRefPubMedGoogle Scholar
  66. Puschendorf R, Castaneda F, McCranie JR (2006) Chytridiomycosis in wild frogs from Pico Bonito National Park, Honduras. EcoHealth 3(3):178–181CrossRefGoogle Scholar
  67. Puschendorf R, Carnaval AC, VanDerWal J, Zumbado-Ulate H, Chaves G, Bolaños F, Alford RA (2009) Distribution models for the amphibian chytrid Batrachochytrium dendrobatidis in Costa Rica: proposing climatic refuges as a conservation tool. Divers Distrib 15(3):401–408CrossRefGoogle Scholar
  68. Puschendorf R, Hoskin CJ, Cashins SD, McDonald KE, Skerratt LF, Vanderwal J, Alford RA (2011) Environmental refuge from disease-driven amphibian extinction. Conserv Biol 25(5):956–964CrossRefPubMedGoogle Scholar
  69. Retallick RW, McCallum H, Speare R (2004) Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biol 2(11):e351CrossRefPubMedPubMedCentralGoogle Scholar
  70. Richards-Hrdlicka KL (2012) Extracting the amphibian chytrid fungus from formalin-fixed specimens. Methods Ecol Evol 3:842–849CrossRefGoogle Scholar
  71. Rodríguez D, Becker CG, Pupin NC, Haddad CFB, Zamudio KR (2014) Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol Ecol 23:774–787CrossRefPubMedGoogle Scholar
  72. Rohr JR, Raffel TR, Romansic JM, McCallum H, Hudson PJ (2008) Evaluating the links between climate, disease spread, and amphibian declines. Proc Natl Acad Sci USA 105(45):17436–17441CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ron SR, Merino A (2000) Amphibian declines in Ecuador: overview and first report of chytridiomycosis from South America. Froglog 42:2–3Google Scholar
  74. Ron SR, Duellman WE, Coloma LA et al (2003) Population decline of the Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. J Herpetol 37:116–126CrossRefGoogle Scholar
  75. Rosenblum EB, James TY, Zamudio KR et al (2013) Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc Natl Acad Sci USA 110:9385–9390CrossRefPubMedPubMedCentralGoogle Scholar
  76. Rovito SM, Parra-Olea G, Vásquez-Almazán CR, Papenfuss TJ, Wake DB (2009) Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis. Proc Natl Acad Sci USA 106:3231–3236CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ruiz A, Rueda-Almonacid JV (2008) Batrachochytrium dendrobatidis and chytridiomycosis in anuran amphibians of Colombia. EcoHealth 5(1):27–33CrossRefPubMedGoogle Scholar
  78. Scheele BC, Guarino F, Osborne W, Hunter DA, Skerratt LF, Driscoll DA (2014a) Decline and re-expansion of an amphibian with high prevalence of chytrid fungus. Biol Conserv 170:86–91CrossRefGoogle Scholar
  79. Scheele BC, Hunter DA, Grogan LF, Berger LE, Kolby JE, McFadden MS, Marantelli G, Skerratt LF, Driscoll DA (2014b) Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians. Biol Conserv 28(5):1195–1205CrossRefGoogle Scholar
  80. Scheele BC, Hunter DA, Skerratt LF, Brannelly LA, Driscoll DA (2015) Low impact of chytridiomycosis on frog recruitment enables persistence in refuges despite high adult mortality. Biol Conserv 182:36–43CrossRefGoogle Scholar
  81. Schloegel LM, Toledo LF, Longcore JE et al (2012) Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol Ecol 21:5162–5177CrossRefPubMedGoogle Scholar
  82. Seimon TA, Seimon A, Daszak P, Halloy SR, Schloegel LM, Aguilar CA, Sowell P, Hyatt AD, Konecky B, Simmons JE (2007) Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob Chang Biol 13(1):288–299CrossRefGoogle Scholar
  83. Skerratt L, Berger L, Speare R et al (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134CrossRefGoogle Scholar
  84. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues AS, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306(5702):1783–1786CrossRefPubMedGoogle Scholar
  85. Sunyer J, Páiz G, Dehling DM, Köhler G (2009) A collection of amphibians from Río San Juan, southeastern Nicaragua. Herpetol Notes 2:189–202Google Scholar
  86. Talley B, Muletz C, Vredenburg V et al (2015) A century of Batrachochytrium dendrobatidis in Illinois amphibians (1888–1989). Biol Conserv 182:254–261CrossRefGoogle Scholar
  87. Ttito A, Landauro CZ, Venegas PJ et al (2016) A new species of Telmatobius Wiegmann, 1834, from the Eastern Cordillera Central of the Andes, Peru (Anura: Telmatobiidae), with description of its tadpole, and range extension of T. mendelsoni De La Riva et al., 2012. Ann Carnegie Mus 83:255–268CrossRefGoogle Scholar
  88. Velásquez BE, Castro F, Bolívar W, Herrera MI (2008) Infección por el hongo quítrido Batrachochytrium dendrobatidis en anuros de la Cordillera Occidental de Colombia. Herpetotropicos 4:65–70Google Scholar
  89. Weygoldt P (1989) Changes in the composition of mountain stream frog communities in the Atlantic mountains of Brazil: frogs as indicators of environmental deteriorations? Stud Neotrop Fauna Environ 24(4):249–255CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Puerto RicoSan JuanUSA
  2. 2.Museo Nacional de Ciencias NaturalesCSICMadridSpain

Personalised recommendations