Biological Invasions

, Volume 19, Issue 5, pp 1637–1652 | Cite as

Population genomics of the raccoon dog (Nyctereutes procyonoides) in Denmark: insights into invasion history and population development

  • Louise Solveig Nørgaard
  • Dorthe Marlene Götz Mikkelsen
  • Morten Elmeros
  • Mariann Chriél
  • Aksel Bo Madsen
  • Jeppe Lund Nielsen
  • Cino Pertoldi
  • Ettore Randi
  • Joerns Fickel
  • Slaska Brygida
  • Aritz Ruiz-González
Original Paper

Abstract

The raccoon dog (Nyctereutes procyonoides) has a wide distribution in Europe and is a prominent example of a highly adaptable alien species. It has been recorded sporadically in Denmark since 1980 but observations since 2008 suggested that the species had established a free-ranging, self-sustaining population. To elucidate the origin and genetic patterns of Danish raccoon dogs, we studied the population genomics of 190 individuals collected in Denmark (n = 141) together with reference captive individuals from Poland (n = 21) and feral individuals from different European localities (Germany, Poland, Estonia and Finland, n = 28). We used a novel genotyping-by-sequencing approach simultaneously identifying and genotyping a large panel of single nucleotide polymorphisms (n = 4526). Overall, there was significant indication for contemporary genetic structuring of the analysed raccoon dog populations, into at least four different clusters, in spite of the existence of long distance gene flow and secondary admixture from different population sources. The Danish population was characterized by a high level of genetic admixture with neighbouring feral European ancestries and the presence of private clusters, non-retrieved in any other feral or captive populations sampled. These results suggested that the raccoon dog population in Denmark was founded by escapees from genetically unidentified Danish captive stocks, followed by a recent admixture with individuals migrating from neighbouring Germany.

Keywords

Colonization Invasive species Population genetics SNPs Genotyping-by-sequencing 

Supplementary material

10530_2017_1385_MOESM1_ESM.docx (488 kb)
Supplementary material 1 (DOCX 487 kb)

References

  1. Abdelkrim J, Pascal M, Calmet C, Samadi S (2005) Importance of assessing population genetic structure before eradication of invasive species: examples from insular Norway rat populations. Conserv Biol 19:1509–1518. doi:10.1111/j.1523-1739.2005.00206.x CrossRefGoogle Scholar
  2. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664. doi:10.1101/gr.094052.109 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allendorf, Lundkvist (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30CrossRefGoogle Scholar
  4. Anonymous (2015) Order regarding housing of specific animals (in Danish: Bekendtgørelse om forbud mod hold af særlige dyr, bek. nr. 1261 af 17/11/2015)Google Scholar
  5. Ansorge H, Ranyuk M, Kauhala K et al (2009) Populations in the area of origin and in colonised regions—the epigenetic variability of an immigrant. Ann Zool Fenn 46:51–62. doi:10.5735/086.046.0106 CrossRefGoogle Scholar
  6. Asferg T (1991) Danmarks Pattedyr 2. Gyldendal, CopenhagenGoogle Scholar
  7. Baagøe HJ, Ujvári M (2007) Mårhund. Dansk Pattedyratlas. Gyldendal, Copenhagen, pp 182–183Google Scholar
  8. Cushman SA (2015) Pushing the envelope in genetic analysis of species invasion. Mol Ecol. doi:10.1111/mec.13043 Google Scholar
  9. Danish Environmental Ministry (2010) Indsatsplan mod mårhund i Danmark, CopenhagenGoogle Scholar
  10. Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. doi:10.1038/nrg3012 CrossRefPubMedGoogle Scholar
  11. Drygala F, Zoller H, Stier N, Roth M (2010) Dispersal of the raccoon dog Nyctereutes procyonoides into a newly invaded area in Central Europe. Wildl Biol 16:150–161. doi:10.2981/08-076 CrossRefGoogle Scholar
  12. Drygala F, Korablev N, Ansorge H et al (2016) Homogenous population genetic structure of the non-native Raccoon dog (Nyctereutes procyonoides) in Europe as a result of rapid population expansion. PLoS ONE 11:e0153098. doi:10.1371/journal.pone.0153098 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ekblom R, Galindo J (2010) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb) 107:1–15. doi:10.1038/hdy.2010.152 CrossRefGoogle Scholar
  14. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi:10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  15. European Union (2014) Regulation no. 1143/2014 on the prevention and management of the introduction and spread of the invasive alien species. European Parliament and Council, Strasbourg, 22 Oct 2014Google Scholar
  16. Fitzpatrick BM, Fordyce J, Niemiller ML, Reynolds RG (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253. doi:10.1007/s10530-011-0064-1 CrossRefGoogle Scholar
  17. Garrick RC, Bonatelli IAS, Hyseni C et al (2015) The evolution of phylogeographic datasets. Mol Ecol 24:1164–1171. doi:10.1111/mec.13108 CrossRefPubMedGoogle Scholar
  18. Glaubitz JC, Casstevens TM, Lu F et al (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9:e90346. doi:10.1371/journal.pone.0090346 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  20. Hampton JO, Spencer PBS, Alpers DL et al (2004) Molecular techniques, wildlife management and the importance of genetic population structure and dispersal: a case study with feral pigs. J Appl Ecol 41:735–743. doi:10.1111/j.0021-8901.2004.00936.x CrossRefGoogle Scholar
  21. Handley LJL, Estoup A, Evans DM, Thomas CE, Lombaert E, Facon B, Aebi A, Roy HE (2011) Ecological genetics of invasive alien species. Biocontrol 56(4):409–428. doi:10.1007/s10526-011-9386-2 CrossRefGoogle Scholar
  22. Helle F, Kauhala K (1991) Distribution history and present status of the raccoon dog in Finland. Holarct Ecol 14:278–286. doi:10.1111/j.1600-0587.1991.tb00662.x Google Scholar
  23. Hoffmann D, Schmüser H (2007) Wildzustandsbereicht Schlesvig-Holstein. FlinkbekGoogle Scholar
  24. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi:10.1093/bioinformatics/btn129 CrossRefPubMedGoogle Scholar
  25. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi:10.1186/1471-2156-11-94 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kasperek K, Horecka B, Jakubcza A et al (2015) Analysis of genetic variability in farmed and wild populations of raccoon dog (Nyctereutes Procyonoides) using microsatellite sequences. Ann Anim Sci 15:889–901Google Scholar
  27. Kauhala K (1996) Introduced carnivores in Europe with special reference to central and northern Europe. Wildl Biol 2:197–204Google Scholar
  28. Kauhala K, Kowalczyk R (2011) Invasion of the raccoon dog Nyctereutes procyonoides in Europe: history of colonization, features behind its success, and threats to native fauna. Curr Zool 57:584–598CrossRefGoogle Scholar
  29. Kauhala K, Saeki M (2004) Raccoon dog (Nyctereutes procyonoides). Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. IUCN/SSC Canid SPecialist Group, Gland, pp 136–138Google Scholar
  30. Korablev NP, Korablev MP, Rozhnov V, Korablev PN (2011) Polymorphism of the mitochondrial DNA control region in the population of raccoon dog (Nyctereutes procyonoides Gray, 1834) introduced into the Upper Volga basin. Russ J Genet 47:1227–1233. doi:10.1134/S1022795411100103 CrossRefGoogle Scholar
  31. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mantel N (1967) Detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  33. Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846. doi:10.1111/j.1365-294X.2012.05578.x CrossRefPubMedGoogle Scholar
  34. MELUR-SH (2014) Jagd und Artenschutz - Jahresbericht 2014. Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schlesvig-Holstein (MELUR-SH), FlintbekGoogle Scholar
  35. Morozov VF (1953) Akklimatizacija ussurskogo enota (Nyctereutes procyonoides, GRAY) kakprimer uspešnogo preobrazovanija fauny pušcnych sverej evropejskoj territorii SSSR. Zool Zhurnal 23:524–533Google Scholar
  36. Mulder JL (2012) A review of the ecology of the raccoon dog (Nyctereutes procyonoides) in Europe. Lutra 55:101–127Google Scholar
  37. Nørgaard LS, Mikkensen D, Rømer A et al (2014) Spredning af feral Mårhund (Nyctereutes procyonoides) i Danmark. Flora Fauna 120:8–14Google Scholar
  38. Nowak E (1984) Verbreitungs- und Bestandsentwicklung des Marderhunds, Nyctereutes procyonoides (Gray, 1834) in Europe. Range and population growth of the raccoon dogs in Europe. Z Jadgwiss 30:137–154Google Scholar
  39. Paulauskas A, Griciuvienė L, Radzijevskaja J, Gedminas V (2015) Genetic characterization of the raccoon dog (Nyctereutes procyonoides), an alien species in the Baltic region. Turk J Zool 34:1–11. doi:10.3906/zoo-1502-34 Google Scholar
  40. Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pitra C, Schwarz S, Fickel J (2010) Going west-invasion genetics of the alien raccoon dog Nyctereutes procynoides in Europe. Eur J Wildl Res 56:117–129. doi:10.1007/s10344-009-0283-2 CrossRefGoogle Scholar
  42. Puillandre N, Dupas S, Dangles O et al (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10:319–333. doi:10.1007/s10530-007-9132-y CrossRefGoogle Scholar
  43. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ralli UM, Kritskaya TI (1953) Erfahrungen über die Akklimatisierung des ussurischen Marderhundes im Gebiet von Rostow. Essai d’acclimation du chien viverrin dans la region de Rostov. An experiment in acclimation of Usurri raccoon dog in the Rostov region. Zool Zhurn 32:513–522 (in Russian)Google Scholar
  45. Rømer A, Nørgaard L, Mikkelsen D et al (2015) Population viability analysis of feral raccoon dog (Nyctereutes procyonoides) in Denmark. Arch Biol Sci 67:111–117. doi:10.2298/ABS140905012R CrossRefGoogle Scholar
  46. Rousset F (2008) GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x CrossRefPubMedGoogle Scholar
  47. Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66. doi:10.1016/j.tree.2012.07.013 CrossRefPubMedGoogle Scholar
  48. Slaska B, Grzybowska-Szatkowska L (2011) Analysis of the mitochondrial haplogroups of farm and wild-living raccoon dogs in Poland. Mitochondrial DNA 22:105–110. doi:10.3109/19401736.2011.624603 CrossRefPubMedGoogle Scholar
  49. Ślaska B, Zięba G, Rozempolska-Rucińska I et al (2010) Evaluation of genetic biodiversity in farm-bred and wild raccoon dogs in Poland. Folia Biol (Krakow) 58:195–199CrossRefGoogle Scholar
  50. Sunde P, Elmeros M (2016) Bestandsudvikling af mårhund i Danmark 2009–2016 i relation til nutidig og fremtidig bekæmpelsesindsats. Technical report, Department of Bioscience, Aarhus UniversityGoogle Scholar
  51. Thioulouse J, Chessel D, Doledec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83. doi:10.1023/A:1018513530268 CrossRefGoogle Scholar
  52. Thirstrup JP, Ruiz-Gonzalez A, Pujolar JM et al (2015) Population genetic structure in farm and feral American mink (Neovison 4 vison) inferred from RAD sequencing-generated single nucleotide 5 polymorphisms. J Anim Sci. doi:10.2527/jas2015-8996 PubMedGoogle Scholar
  53. Travis JMJ, Park KJ (2004) Spatial structure and the control of invasive alien species. Anim Conserv 7:321–330. doi:10.1017/S1367943004001507 CrossRefGoogle Scholar
  54. Venables WN, Ripley BD (2002) Modern applied statistics with S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  55. Wahlund S (1928) Zusammensetzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. Hereditas 11:65–106. doi:10.1111/j.1601-5223.1928.tb02483.x CrossRefGoogle Scholar
  56. Weir B, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  57. White TA, Perkins SE, Heckel G, Searle JB (2013) Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol Ecol 22:2971–2985. doi:10.1111/mec.12343 CrossRefPubMedGoogle Scholar
  58. Wright S (1943) Isolation b y distance. Genetics 28:114–138PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Louise Solveig Nørgaard
    • 1
    • 2
    • 3
  • Dorthe Marlene Götz Mikkelsen
    • 1
    • 2
  • Morten Elmeros
    • 2
  • Mariann Chriél
    • 4
  • Aksel Bo Madsen
    • 2
  • Jeppe Lund Nielsen
    • 1
  • Cino Pertoldi
    • 1
  • Ettore Randi
    • 1
    • 5
  • Joerns Fickel
    • 6
    • 7
  • Slaska Brygida
    • 8
  • Aritz Ruiz-González
    • 5
    • 9
    • 10
  1. 1.Section of Biology and Environmental Engineering, Chemistry and Environmental EngineeringAalborg UniversityAalborgDenmark
  2. 2.Department of BioscienceAarhus University, KaløRøndeDenmark
  3. 3.School of Biological SciencesMonash UniversityMelbourneAustralia
  4. 4.National Veterinary Institute, Copenhagen, Technical University of DenmarkFrederiksberg CDenmark
  5. 5.Conservation Genetics LaboratoryNational Institute for Environmental Protection and Research (ISPRA)Ozzano dell’EmiliaItaly
  6. 6.Department of Evolutionary GeneticsLeibniz-Institute for Zoo and Wildlife Research (IZW)BerlinGermany
  7. 7.Department of Molecular Ecology and EvolutionPotsdam UniversityPotsdamGermany
  8. 8.Department of Biological Bases of Animal ProductionUniversity of Life Sciences in LublinLublinPoland
  9. 9.Department of Zoology and Animal Cell BiologyUniversity of the Basque Country UPV/EHUVitoria-GasteizSpain
  10. 10.Systematics, Biogeography and Population Dynamics Research Group, Lascaray Research CenterUniversity of the Basque Country (UPV/EHU)Vitoria-GasteizSpain

Personalised recommendations