Skip to main content
Log in

Precipitation timing and soil heterogeneity regulate the growth and seed production of the invasive grass red brome

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasions of exotic grasses are increasing the spatial extent and temporal frequency of wildfire. Mitigation efforts to prevent wildfire depend on understanding the biophysical agents that drive spatial and temporal distributions of exotic grasses. We examined the growth and reproduction of the exotic grass red brome (Bromus rubens L.) in response to precipitation timing in the fall period, fertile-island topography, and fire history in the Mojave Desert. Tiller density, shoot height, shoot biomass, and seed production were measured. Early precipitation timing (mid-October versus late November) triggered early germination and led to greater red brome density (1.5-fold), shoot height (1.9-fold), shoot biomass (6.8-fold) and seed production (3.9-fold). Soil cores collected from beneath shrubs (fertile-islands) versus shrub inter-spaces also produced red brome with enhanced shoot height (1.5-fold), and seed production (1.9-fold). The legacy effect of wildfires on soils (10 years after the fires) had no significant effect on the growth or reproduction of red brome. Soils beneath shrubs had significantly less gravel and higher mineral nitrogen (N) concentrations than soils from shrub inter-spaces. Soil gravel % was negatively correlated with red brome density, height, biomass and seed production while mineral N tended to have weak positively correlations with red brome density and seed production. These results suggest that the growth and reproduction of red brome is influenced by fall precipitation timing and soil characteristics. Management planning for fire intervention should consider fall precipitation patterns, soil characteristics and shrub topography as important determinants of red brome growth and fire potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abella SR (2010) Disturbance and plant succession in the Mojave and Sonoran Deserts of the American Southwest. Int J Environ Res Public Health 7:1248–1284. doi:10.3390/ijerph7041248

    PubMed  PubMed Central  Google Scholar 

  • Abella SR, Craig DJ, Chiquoine LP et al (2011a) Relationships of Native desert plants with red brome (Bromus rubens): toward identifying invasion-reducing species. Invasive Plant Sci Manag 4:115–124. doi:10.1614/IPSM-D-10-00013.1

    Google Scholar 

  • Abella SR, Lee AC, Suazo AA (2011b) Effects of burial depth and substrate on the emergence of Bromus rubens and Brassica tournefortii. Bull South Calif Acad Sci 110:17–24. doi:10.3160/0038-3872-110.1.17

    Google Scholar 

  • Abella SR, Embrey TM, Schmid SM, Prengaman KA (2012) Biophysical correlates with the distribution of the invasive annual red brome (Bromus rubens) on a Mojave Desert Landscape. Invasive Plant Sci Manag 5:47–56. doi:10.1614/IPSM-D-11-00030.1

    Google Scholar 

  • Allen PS, Meyer SE, Beckstead J (1995) Patterns of seed after-ripening in Bromus tectorum L. J Exp Bot 46:1737–1744. doi:10.1093/jxb/46.11.1737

    CAS  Google Scholar 

  • Allen EB, Steers RJ, Dickens SJ (2011) Impacts of fire and invasive species on desert soil ecology. Rangel Ecol Manag 64:450–462. doi:10.2111/REM-D-09-00159.1

    Google Scholar 

  • Austin AT, Yahdjian L, Stark JM et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235. doi:10.1007/s00442-004-1519-1

    PubMed  Google Scholar 

  • Balch JK, Bradley BA, D’Antonio CM, Gómez-Dans J (2013) Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob Change Biol 19:173–183. doi:10.1111/gcb.12046

    Google Scholar 

  • Beatley JC (1974) Effects of rainfall and temperature on the distribution and behavior of Larrea tridentata (creosote-bush) in the Mojave Desert of Nevada. Ecology 55:245–261. doi:10.2307/1935214

    Google Scholar 

  • Bestelmeyer BT, Brown JR, Havstad KM et al (2003) Development and use of State-and-Transition models for rangelands. J Range Manage 56:114–126. doi:10.2307/4003894

    Google Scholar 

  • Bond W, Keeley J (2005) Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394. doi:10.1016/j.tree.2005.04.025

    PubMed  Google Scholar 

  • Brakensiek DL, Rawls WJ (1994) Soil containing rock fragments: effects on infiltration. CATENA 23:99–110. doi:10.1016/0341-8162(94)90056-6

    Google Scholar 

  • Brittingham S, Walker RL (2000) Facilitation of Yucca brevifolia recruitment by Mojave Desert shrubs. West North Am Nat 60:374–383

    Google Scholar 

  • Brooks ML (1999a) Habitat invasibility and dominance by alien annual plants in the western Mojave Desert. Biol Invasions 1:325–337. doi:10.1023/A:1010057726056

    Google Scholar 

  • Brooks ML (1999b) Alien annual grasses and fire in the Mojave Desert. Madrono 46:13–19

    Google Scholar 

  • Brooks ML (2000) Competition between alien annual grasses and native annual plants in the Mojave Desert. Am Midl Nat 144:92–108

    Google Scholar 

  • Brooks ML (2003) Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. J Appl Ecol 40:344–353. doi:10.1046/j.1365-2664.2003.00789.x

    Google Scholar 

  • Brooks ML (2012) Effects of high fire frequency in creosote bush scrub vegetation of the Mojave Desert. Int J Wildland Fire 21:61–68

    Google Scholar 

  • Brooks ML, Berry KH (2006) Dominance and environmental correlates of alien annual plants in the Mojave Desert, USA. J Arid Environ 67(Supplement):100–124. doi:10.1016/j.jaridenv.2006.09.021

    Google Scholar 

  • Brooks ML, Matchett JR (2006) Spatial and temporal patterns of wildfires in the Mojave Desert, 1980–2004. J Arid Environ 67:148–164

    Google Scholar 

  • Brooks ML, D’Antonio CM, Richardson DM et al (2004a) Effects of invasive alien plants on fire regimes. BioScience 54:677. doi:10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2

    Google Scholar 

  • Brooks ML, Matchett J, Wallace C, Esque T (2004b) Fuels mapping and fire hazard assessment in a desert ecosystem. Arid Lands Newsl 55:1–5

    Google Scholar 

  • Brooks ML et al (2009) Spatial and temporal distribution of nonnative plants in upland areas of the Mojave Desert. In: Webb RH, Fenstermaker LF, Heaton JS (eds) The Mojave Desert: ecosystem processes and sustainability. University of Nevada Press, Reno, pp 101–124

    Google Scholar 

  • Bukowski BE, Baker WL (2012) Historical fire regimes, reconstructed from land-survey data, led to complexity and fluctuation in sagebrush landscapes. Ecol Appl 23:546–564. doi:10.1890/12-0844.1

    Google Scholar 

  • Bykova O, Sage RF (2012) Winter cold tolerance and the geographic range separation of Bromus tectorum and Bromus rubens, two severe invasive species in North America. Glob Change Biol 18:3654–3663. doi:10.1111/gcb.12003

    Google Scholar 

  • Callison J, Brotherson JD, Bowns JE (1985) The effects of fire on the blackbrush [Coleogyne ramosissima] community of southwestern Utah. J Range Manag 38:535–538

    Google Scholar 

  • Chambers JC, Germino MJ, Belnap J et al (2016) Plant community resistance to invasion by Bromus species: the roles of community attributes, Bromus interactions with plant communities, and Bromus traits. In: Germino MJ, Chambers JC, Brown CS (eds) Exotic brome-grasses in arid and semiarid ecosystems of the western US. Springer, Berlin, pp 275–304

    Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87. doi:10.2307/2097282

    Google Scholar 

  • Drezner TD (2006) Regeneration of Carnegiea gigantea (Cactaceae) since 1850 in three populations in the northern Sonoran Desert. Acta Oecol 29:178–186. doi:10.1016/j.actao.2005.09.005

    Google Scholar 

  • Engel EC, Abella SR (2011) Vegetation recovery in a desert landscape after wildfires: influences of community type, time since fire and contingency effects. J Appl Ecol 48:1401–1410. doi:10.1111/j.1365-2664.2011.02057.x

    Google Scholar 

  • Esque TC, Kaye JP, Eckert SE et al (2010) Short-term soil inorganic N pulse after experimental fire alters invasive and native annual plant production in a Mojave Desert shrubland. Oecologia 164:253–263. doi:10.1007/s00442-010-1617-1

    PubMed  Google Scholar 

  • Ewing SA, Southard RJ, Macalady JL et al (2007) Soil microbial fingerprints, carbon, and nitrogen in a Mojave Desert creosote-bush ecosystem. Soil Sci Soc Am J 71:469–475

    CAS  Google Scholar 

  • Germino MJ, Belnap J, Stark JM et al (2016) Ecosystem impacts of exotic annual invaders in the genus Bromus. In: Germino MJ, Chambers JC, Brown CS (eds) Exotic brome-grasses in arid and semiarid ecosystems of the western US. Springer, Berlin, pp 61–95

    Google Scholar 

  • Haubensak K, D’Antonio C, Wixon D (2009) Effects of fire and environmental variables on plant structure and composition in grazed salt desert shrublands of the Great Basin (USA). J Arid Environ 73:643–650. doi:10.1016/j.jaridenv.2008.12.020

    Google Scholar 

  • Havstad KM, Huenneke LF, Schlesinger WH (2006) Structure and function of a Chihuahuan Desert ecosystem: the Jornada Basin long-term ecological research site. Oxford University Press, Oxford

    Google Scholar 

  • Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293

    CAS  Google Scholar 

  • Horn KJ, St. Clair SB (2017) Wildfire and exotic grass invasion alter plant productivity in response to climate variability in the Mojave Desert. Landsc Ecol. doi:10.1007/s10980-016-0466-7 (In press)

    Article  Google Scholar 

  • Horn KJ, Nettles R, St. Clair SB (2015a) Germination response to temperature and moisture to predict distributions of the invasive grass red brome and wildfire. Biol Invasions. doi:10.1007/s10530-015-0841-3

    Article  Google Scholar 

  • Horn KJ, Wilkinson J, White S, St. Clair SB (2015b) Desert wildfire impacts on plant community function. Plant Ecol 216:1623–1634. doi:10.1007/s11258-015-0546-9

    Google Scholar 

  • Huenneke LF, Noble I (1996) Ecosystem function of biodiversity in arid ecosystems. In: Mooney HA, International Council of Scientific Unions, United Nations Environment Programme (eds) Functional roles of biodiversity: A global perspective. Wiley, Chichester, New York, pp 99–128

  • Humphrey RR (1974) Fire in the deserts and desert grasslands of North America. In: Kozlowski TT, Ahlgren CE (eds) Fire and ecosystems. USA Academic Press, New York, pp 365–401

    Google Scholar 

  • Hunter ME, Omi PN (2006) Response of native and exotic grasses to increased soil nitrogen and recovery in a postfire environment. Restor Ecol 14:587–594

    Google Scholar 

  • Jurand BS, Abella SR (2013) Soil seed banks of the exotic annual grass Bromus rubens on a burned desert landscape. Rangel Ecol Manag 66:157–163. doi:10.2111/REM-D-12-00106.1

    Google Scholar 

  • Jurand BS, Abella SR, Suazo AA (2013) Soil seed bank longevity of the exotic annual grass Bromus rubens in the Mojave Desert, USA. J Arid Environ 94:68–75. doi:10.1016/j.jaridenv.2013.03.006

    Google Scholar 

  • Keeney D, Nelson D (1982) Nitrogen—inorganic forms. In: Page A (ed) Methods of soil analysis part 2. Madison, WI, pp 643–698

    Google Scholar 

  • Lei SA (1999) Postfire woody vegetation recovery and soil properties in blackbrush (Coleogyne ramosissima Torr.) shrubland ecotones. J Ariz-Nev Acad Sci 32:105–115

    Google Scholar 

  • Mack RN, Pyke DA (1983) The demography of bromus tectorum: variation in time and space. J Ecol 71:69–93. doi:10.2307/2259964

    Google Scholar 

  • Meyer SE, Allen PS (2009) Predicting seed dormancy loss and germination timing for Bromus tectorum in a semi-arid environment using hydrothermal time models. Seed Sci Res 19:225–239

    Google Scholar 

  • Miller DM, Bedford DR, Hughson DL et al (2009) Mapping mojave desert ecosystem properties with surficial geology. In: Webb RH, Fenstermaker LF, Heaton JS et al. (eds) The mojave desert: ecosystem processes and sustainability. University of Nevada Press, Reno, Nevada 89577 USA, pp 225–251

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Google Scholar 

  • Paruelo JM, Aguiar MR, Golluscio RA (1988) Soil water availability in the Patagonian arid steppe: gravel content effect. Arid Soil Res Rehabil 2:67–74. doi:10.1080/15324988809381159

    Google Scholar 

  • Phillips DL, MacMahon JA (1981) Competition and spacing patterns in desert shrubs. J Ecol 69:97–115. doi:10.2307/2259818

    Google Scholar 

  • Provencher L, Frid L, Czembor C, Morisette JT (2016) State-and-transition models: conceptual versus simulation perspectives, usefulness and breadth of use, and land management applications. In: Germino MJ, Chambers JC, Brown CS (eds) Exotic brome-grasses in arid and semiarid ecosystems of the western US. Springer, Berlin, pp 371–407

    Google Scholar 

  • Ravi S, D’Odorico P (2009) Post-fire resource redistribution and fertility island dynamics in shrub encroached desert grasslands: a modeling approach. Landsc Ecol 24:325–335. doi:10.1007/s10980-008-9307-7

    Google Scholar 

  • Reisner MD, Grace JB, Pyke DA, Doescher PS (2013) Conditions favouring Bromus tectorum dominance of endangered sagebrush steppe ecosystems. J Appl Ecol 50:1039–1049. doi:10.1111/1365-2664.12097

    Google Scholar 

  • Rice PM, McPherson GR, Rew LJ (2008) Fire and nonnative invasive plant in the interrior west bioregion. In: Zouhar K, Smith JK, Sutherland S, Brooks ML (eds) Wildland fire in ecosystems: fire and nonnative invasive plants. US Deparmtent of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, pp 141–171

  • Roundy BA, Hardegree SP, Chambers JC, Whittaker A (2007) Prediction of cheatgrass field germination potential using wet thermal accumulation. Rangel Ecol Manag 60:613–623. doi:10.2111/05-206R3.1

    Google Scholar 

  • Salo LF (2004) Population dynamics of red brome (Bromus madritensis subsp. rubens): times for concern, opportunities for management. J Arid Environ 57:291–296. doi:10.1016/S0140-1963(03)00110-1

    Google Scholar 

  • Salo LF (2005) Red brome (Bromus rubens subsp. madritensis) in North America: possible modes for early introductions, subsequent spread. Biol Invasions 7:165–180. doi:10.1007/s10530-004-8979-4

    Google Scholar 

  • Schlesinger WH, Pilmanis AM (1998) Plant-soil interactions in deserts. Biogeochemistry 42:169–187. doi:10.1023/A:1005939924434

    Google Scholar 

  • Shinneman DJ, Baker WL (2009) Environmental and climatic variables as potential drivers of post-fire cover of cheatgrass (Bromus tectorum) in seeded and unseeded semiarid ecosystems. Int J Wildland Fire 18:191–202

    Google Scholar 

  • Soil Survey Staff (2011) Web soil survey. Natural Resources Conservation Service, United States Department of Agriculture. http://websoilsurvey.nrcs.usda.gov. Accessed 1 May 2013

  • St. Clair SB, O’Connor R, Gill R, McMillan B (2016) Biotic resistance and disturbance: rodent consumers regulate post-fire plant invasions and increase plant community diversity. Ecology 97:1700–1711. doi:10.1002/ecy.1391

    PubMed  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL et al (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16

    Google Scholar 

  • Walker LR, Thompson DB, Landau FH (2001) Experimental manipulations of fertile islands and nurse plant effects in the Mojave Desert, USA. West North Am Nat 61:25–35

    Google Scholar 

  • Webb RH, Belnap J, Thomas KA et al (2009) Natural recovery from severe disturbance in the Mojave Desert. In: Webb RH, Fenstermaker LF, Heaton JS (eds) The Mojave Desert: ecosystem processes and sustainability. University of Nevada Press, Reno, pp 343–377

    Google Scholar 

  • Westerling AL, Gershunov A, Brown TJ et al (2003) Climate and wildfire in the western United States. Bull Am Meteorol Soc 84:595–604. doi:10.1175/BAMS-84-5-595

    Google Scholar 

  • Young DR, Nobel PS (1986) Predictions of soil-water potentials in the north-western Sonoran Desert. J Ecol 74:143–154. doi:10.2307/2260355

    Google Scholar 

  • Young MH, McDonald EV, Caldwell TG et al (2004) Hydraulic properties of a desert soil chronosequence in the Mojave Desert, USA. Vadose Zone J 3:956–963. doi:10.2113/3.3.956

    Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. Zachary Aanderud and Dr. Steven Petersen for their review of this manuscript along with Earl Hansen, Rachel Nettles, Nathan Duncan, Alysa DeFranco, Amanda Wittington and Justin Taylor for assistance with the experiments. We express appreciation for the use of Brigham Young University’s Lytle Ranch Preserve. This research was funded by the Sant Educational Endowment for a Sustainable Environment, the United States Department of Agriculture NIFA award number 2010-04092, and the Bureau of Land Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel B. St. Clair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horn, K.J., Bishop, T.B.B. & St. Clair, S.B. Precipitation timing and soil heterogeneity regulate the growth and seed production of the invasive grass red brome. Biol Invasions 19, 1339–1350 (2017). https://doi.org/10.1007/s10530-016-1348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1348-2

Keywords

Navigation