Biological Invasions

, Volume 19, Issue 2, pp 577–596 | Cite as

Unusual suspects in the usual places: a phylo-climatic framework to identify potential future invasive species

  • R. M. B. HarrisEmail author
  • D. J. Kriticos
  • T. Remenyi
  • N. Bindoff
Original Paper


A framework for identifying species that may become invasive under future climate conditions is presented, based on invader attributes and biogeography in combination with projections of future climate. We illustrate the framework using the CLIMEX niche model to identify future climate suitability for three species of Hawkweed that are currently present in the Australian Alps region and related species that are present in the neighbouring region. Potential source regions under future climate conditions are identified, and species from those emerging risk areas are identified. We use dynamically downscaled climate projections to complement global analyses and provide fine-scale projections of suitable climate for current and future (2070–2099) conditions at the regional scale. Changing climatic conditions may reduce the suitability for some invasive species and improve it for others. Invasive species with distributions strongly determined by climate, where the projected future climate is highly suitable, are those with the greatest potential to be future invasive species in the region. As the Alps region becomes warmer and drier, many more regions of the world become potential sources of invasive species, although only one additional species of Hawkweed is identified as an emerging risk. However, in the longer term, as the species in these areas respond to global climate change, the potential source areas contract again to match higher altitude regions. Knowledge of future climate suitability, based on species-specific climatic tolerances, is a useful step towards prioritising management responses such as targeted eradication and early intervention to prevent the spread of future invasive species.


Climate change Hawkweeds Regional climate projections Species distribution models Weed risk assessment 



The Australian Alps managers, in particular Gill Anderson and Peter Jacobs, helped with discussions about invasive species of concern in the Australian Alps; Suzie Gaynor helped produce the framework diagram. This research is an output from the Landscapes and Policy Research Hub, which was supported through funding from the Australian Government’s National Environmental Research Programme.

Author contributions

RMBH and DJK conceived the ideas; RMBH, TR, DJK and NB collected the data; R. MBH and TR analysed the data; RMBH led the writing.

Supplementary material

10530_2016_1334_MOESM1_ESM.docx (10 mb)
Supplementary material 1 (DOCX 10282 kb)
10530_2016_1334_MOESM2_ESM.docx (373 kb)
Supplementary material 2 (DOCX 373 kb)
10530_2016_1334_MOESM3_ESM.docx (28 kb)
Supplementary material 3 (DOCX 28 kb)
10530_2016_1334_MOESM4_ESM.docx (4.1 mb)
Supplementary material 4 (DOCX 4201 kb)
10530_2016_1334_MOESM5_ESM.docx (15 kb)
Supplementary material 5 (DOCX 14 kb)
10530_2016_1334_MOESM6_ESM.docx (37 kb)
Supplementary material 6 (DOCX 36 kb)
10530_2016_1334_MOESM7_ESM.csv (14.8 mb)
Supplementary material 7 (CSV 15169 kb)
10530_2016_1334_MOESM8_ESM.csv (21 kb)
Supplementary material 8 (CSV 21 kb)
10530_2016_1334_MOESM9_ESM.csv (1 kb)
Supplementary material 9 (CSV 1 kb)
10530_2016_1334_MOESM10_ESM.csv (576 kb)
Supplementary material 10 (CSV 575 kb)
10530_2016_1334_MOESM11_ESM.csv (5 kb)
Supplementary material 11 (CSV 4 kb)
10530_2016_1334_MOESM12_ESM.csv (4 kb)
Supplementary material 12 (CSV 3 kb)
10530_2016_1334_MOESM13_ESM.csv (2 kb)
Supplementary material 13 (CSV 1 kb)


  1. Auld B et al (2012) Further development of the National weed risk management protocol. Developing solutions to evolving weed problems. Paper presented at the 18th Australasian Weeds Conference, Melbourne, Victoria, Australia, 8–11, October 2012Google Scholar
  2. Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423. doi: 10.1111/j.1365-2664.2006.01136.x CrossRefGoogle Scholar
  3. Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:250–269. doi: 10.1016/j.ecolmodel.2005.01.030 CrossRefGoogle Scholar
  4. Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420. doi: 10.1111/j.1472-4642.2008.00547.x CrossRefGoogle Scholar
  5. Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Glob Change Biol 19:3740–3748. doi: 10.1111/gcb.12344 CrossRefGoogle Scholar
  6. Bradley B, Wilcove D, Oppenheimer M (2010a) Climate change increases risk of plant invasion in the Eastern United States. Biol Invasions 12:1855–1872. doi: 10.1007/s10530-009-9597-y CrossRefGoogle Scholar
  7. Braganza K et al. (2015) Understanding recent australian climate. Chapter 4, climate change in Australia. Information for Australia’s natural resource management regions: technical report. CSIRO and Bureau of Meteorology, Australia.
  8. Brooker RW, Travis JMJ, Clark EJ, Dytham C (2007) Modelling species’ range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change. J Theor Biol 245:59–65. doi: 10.1016/j.jtbi.2006.09.033 CrossRefPubMedGoogle Scholar
  9. Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623CrossRefGoogle Scholar
  10. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16:1145–1157. doi: 10.1111/j.1365-2486.2009.02000.x CrossRefGoogle Scholar
  11. Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40. doi: 10.1111/j.1472-4642.2008.00521.x CrossRefGoogle Scholar
  12. Chamberlin TC (1965) The method of multiple working hypotheses. Science 148:754–759CrossRefPubMedGoogle Scholar
  13. Corney S et al (2013) Performance of downscaled regional climate simulations using a variable-resolution regional climate model: tasmania as a test case. J Geophys Res Atmos 118:11936–11950. doi: 10.1002/2013jd020087 CrossRefGoogle Scholar
  14. Crossman ND, Bryan BA, Cooke DA (2011) An invasive plant and climate change threat index for weed risk management: integrating habitat distribution pattern and dispersal process. Ecol Ind 11:183–198. doi: 10.1016/j.ecolind.2008.10.011 CrossRefGoogle Scholar
  15. Crosti R, Cascone C, Cipollaro S (2010) Use of a weed risk assessment for the Mediterranean region of Central Italy to prevent loss of functionality and biodiversity in agro-ecosystems. Biol Invasions 12:1607–1616. doi: 10.1007/s10530-009-9573-6 CrossRefGoogle Scholar
  16. CSIRO and Bureau of Meteorology. 2015. Climate change in Australia. information for Australia’s natural resource management regions: technical report. CSIRO and Bureau of Meteorology, AustraliaGoogle Scholar
  17. Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035. doi: 10.1111/j.1365-2486.2010.02263.x CrossRefGoogle Scholar
  18. Dowdy AJ, Grose MR, Timbal B, Moise A, Ekström M, Bhend J, Wilson LM (2015) Rainfall in Australia’s eastern seaboard: a review of confidence in projections based on observations and physical processes. Aust Meteorol Oceanogr J 65:107–126Google Scholar
  19. Dunlop M, Parris H, Ryan P, Kroon F (2013) Climate-ready conservation objectives: a scoping study. National Climate Change Adaptation Research Facility, Gold CoastGoogle Scholar
  20. Eyre D et al (2012) Rating and mapping the suitability of the climate for pest risk analysis*. EPPO Bull 42:48–55. doi: 10.1111/j.1365-2338.2012.02549.x CrossRefGoogle Scholar
  21. Gallagher RV, Duursma DE, O’Donnell J, Wilson PD, Downey PO, Hughes L, Leishman MR (2013) The grass may not always be greener: projected reductions in climatic suitability for exotic grasses under future climates in Australia. Biol Invasions 15:961–975. doi: 10.1007/s10530-012-0342-6 CrossRefGoogle Scholar
  22. Gallien L, Munkemuller T, Albert CH, Boulangeat I, Thuiller W (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distrib 16:331–342. doi: 10.1111/j.1472-4642.2010.00652.x CrossRefGoogle Scholar
  23. Gaskin JF, Wilson LM (2007) Phylogenetic relationships among native and naturalized Hieracium (Asteraceae) in Canada and the United States based on plastid DNA sequences. Syst Bot 32:478–485. doi: 10.1600/036364407781179752 CrossRefGoogle Scholar
  24. Gould SF, Beeton NJ, Harris RMB, Hutchinson MF, Lechner AM, Porfirio LL, Mackey BG (2014) A tool for simulating and communicating uncertainty when modelling species distributions under future climates. Ecol Evol 4:4798–4811. doi: 10.1002/ece3.1319 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gritti ES, Smith B, Sykes MT (2006) Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. J Biogeogr 33:145–157. doi: 10.1111/j.1365-2699.2005.01377.x CrossRefGoogle Scholar
  26. Guo Q (2006) Intercontinental biotic invasions: what can we learn from native populations and habitats? Biol Invasions 8:1451–1459. doi: 10.1007/s10530-005-5834-1 CrossRefGoogle Scholar
  27. Harris RM, Porfirio LL, Hugh S, Lee G, Bindoff NL, Mackey B, Beeton NJ (2013) To be or not to be? Variable selection can change the projected fate of a threatened species under future climate. Ecol Manag Restor 14:230–234. doi: 10.1111/emr.12055 CrossRefGoogle Scholar
  28. Harris RM, Grose M, Lee G, Bindoff NL, Porfirio LL, Fox-Hughes P (2014) Climate projections for ecologists WIREs. Clim Change. doi: 10.1002/wcc.1291 Google Scholar
  29. Harris RMB, Carter O, Gilfedder L, Porfirio LL, Lee G, Bindoff N (2015) Noah’s Ark conservation will not preserve threatened ecological communities under climate change. PLoS ONE 10(4):e0124014. doi: 10.1371/journal.pone.0124014 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543. doi: 10.1111/j.1523-1739.2008.00951.x CrossRefPubMedGoogle Scholar
  31. Hijmans R, Cameron S, Parra J, Jones P, Jarvis A (2011) WORLDCLIM—a set of global climate layers (climate grids).
  32. Hoffmann BD, Courchamp F (2016) Biological invasions and natural colonisations: are they that different? NeoBiota 29:1–14CrossRefGoogle Scholar
  33. Hughes L (2011) Climate change and Australia: key vulnerable regions. Reg Environ Change 11:S189–S195. doi: 10.1007/s10113-010-0158-9 CrossRefGoogle Scholar
  34. Hulme PE (2003) Biological invasions: winning the science battles but losing the conservation war? Oryx 37:178–193. doi: 10.1017/s003060530300036x CrossRefGoogle Scholar
  35. International Organization for Plant Information (2015). Details for Hieracium. Provisional Global Plant ChecklistGoogle Scholar
  36. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  37. Irving DB, Whetton P, Moise AF (2012) Climate projections for Australia: a first glance at CMIP5. Aust Meteorol Oceanogr J 62:211–225Google Scholar
  38. Knutti R, Sedlacek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections Nature. Clim Change 3:369–373. doi: 10.1038/nclimate1716 CrossRefGoogle Scholar
  39. Koop AL, Fowler L, Newton LP, Caton BP (2012) Development and validation of a weed screening tool for the United States. Biol Invasions 14:273–294. doi: 10.1007/s10530-011-0061-4 CrossRefGoogle Scholar
  40. Kriticos DJ (2012) Regional climate-matching to estimate current and future sources of biosecurity threats. Biol Invasions 14:1533–1544. doi: 10.1007/s10530-011-0033-8 CrossRefGoogle Scholar
  41. Kriticos DJ, Sutherst RW, Brown JR, Adkins SW, Maywald GF (2003) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp indica in Australia. J Appl Ecol 40:111–124. doi: 10.1046/j.1365-2664.2003.00777.x CrossRefGoogle Scholar
  42. Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, Bathols J, Scott JK (2012) CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol Evol 3:53–64. doi: 10.1111/j.2041-210X.2011.00134.x CrossRefGoogle Scholar
  43. Kriticos DJ et al (2015a) Downscaling pest risk analyses: identifying current and future potentially suitable habitats for Parthenium hysterophorus with particular reference to Europe and North Africa. PLoS ONE. doi: 10.1371/journal.pone.0132807 Google Scholar
  44. Kriticos DJ, Maywald GF, Yonow T, Zurcher EJ, Herrmann NI, Sutherst RW (2015b) CLIMEX Version 4: exploring the effects of climate on plants, animals and diseases. CSIRO, CanberraGoogle Scholar
  45. Kuhn I, Durka W, Klotz S (2004) BiolFlor—a new plant-trait database as a tool for plant invasion ecology. Divers Distrib 10:363–365. doi: 10.1111/j.1366-9516.2004.00106.x CrossRefGoogle Scholar
  46. Lee T, Waliser DE, Li JLF, Landerer FW, Gierach MM (2013) Evaluation of CMIP3 and CMIP5 wind stress climatology using satellite measurements and atmospheric reanalysis products. J Clim 26:5810–5826. doi: 10.1175/jcli-d-12-00591.1 CrossRefGoogle Scholar
  47. Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences and control. Ecol Appl 10:689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC] CrossRefGoogle Scholar
  48. Makepeace W (1985) Some establishment characteristics of Mouse-ear and King Devil Hawkweeds. NZ J Bot 23:91–100CrossRefGoogle Scholar
  49. McGregor KF, Watt MS, Hulme PE, Duncan RP (2012) How robust is the Australian Weed Risk Assessment protocol? A test using pine invasions in the Northern and Southern hemispheres. Biol Invasions 14:987–998. doi: 10.1007/s10530-011-0133-5 CrossRefGoogle Scholar
  50. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069. doi: 10.1111/j.1600-0587.2013.07872.x CrossRefGoogle Scholar
  51. Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DCGoogle Scholar
  52. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  53. Morgan-Richards M, Trewick SA, Chapman HM, Krahulcova A (2004) Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity 93:34–42. doi: 10.1038/sj.hdy.6800476 CrossRefPubMedGoogle Scholar
  54. Nagel JM, Huxman TE, Griffin KL, Smith SD (2004) CO2 enrichment reduces the energetic cost of biomass construction in an invasive desert grass. Ecology 85(1):100–106CrossRefGoogle Scholar
  55. Natural Heritage Trust (2003) Weed management guide: orange hawkweed (hieracium aurantiacum). Alert list for environmental weeds, CRC for Australian Weed ManagementGoogle Scholar
  56. Nishida T, Yamashita N, Asai M, Kurokawa S, Enomoto T, Pheloung P, Groves R (2009) Developing a pre-entry weed risk assessment system for use in Japan. Biol Invasions 11:1319–1333. doi: 10.1007/s10530-008-9340-0 CrossRefGoogle Scholar
  57. Nunez MA, Medley KA (2011) Pine invasions: climate predicts invasion success; something else predicts failure. Divers Distrib 17:703–713. doi: 10.1111/j.1472-4642.2011.00772.x CrossRefGoogle Scholar
  58. Parmesan C (2006) Ecological and evolutionary responses to recent climate change annual review of ecology. Evol Systematics 37:637–669CrossRefGoogle Scholar
  59. Parmesan C, Hanley ME (2015) Plants and climate change: complexities and surprises. Ann Bot 116:849–864. doi: 10.1093/aob/mcv169 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pearson RG et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711. doi: 10.1111/j.1365-2699.2006.01460.x CrossRefGoogle Scholar
  61. Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manage 57:239–251. doi: 10.1006/jema.1999.0297 CrossRefGoogle Scholar
  62. Risbey JS, O’Kane TJ (2011) Sources of knowledge and ignorance in climate research. Clim Change 108:755–773CrossRefGoogle Scholar
  63. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates Nature. Clim Change 2:248–253. doi: 10.1038/nclimate1385 CrossRefGoogle Scholar
  64. Roger E et al (2015) A tool to assess potential for alien plant establishment and expansion under climate change. J Environ Manag 159:121–127. doi: 10.1016/j.jenvman.2015.05.039 CrossRefGoogle Scholar
  65. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi: 10.1038/nature01333 CrossRefPubMedGoogle Scholar
  66. Roy HE et al (2014) Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain. Glob Chang Biol 20:3859–3871. doi: 10.1111/gcb.12603 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sainty G, Hosking J, Jacobs S (2007) Alps invaders: weeds of the high country. Tabletop Press, Canberra, AustraliaGoogle Scholar
  68. Shelford VE (1963) The ecology of North America. University of Illinois Press, UrbanaGoogle Scholar
  69. Strother JL (2006) Hieracium. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico vol. 19–21. Oxford University Press, New York, pp 278–294Google Scholar
  70. Sutherst RW (2014) Pest species distribution modelling: origins and lessons from history. Biol Invasions 16:239–256. doi: 10.1007/s10530-013-0523-y CrossRefGoogle Scholar
  71. Sutherst RW, Bourne AS (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol Invasions 11:1231–1237CrossRefGoogle Scholar
  72. Sutherst RW, Maywald GF (1985) A computerised system for matching climates in ecology Agriculture. Ecost Environ 13:281–299. doi: 10.1016/0167-8809(85)90016-7 CrossRefGoogle Scholar
  73. Synes NW, Osborne PE (2011) Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Glob Ecol Biogeogr 20:904–914. doi: 10.1111/j.1466-8238.2010.00635.x CrossRefGoogle Scholar
  74. Taylor S, Kumar L, Reid N, Kriticos DJ (2012) Climate change and the potential distribution of an invasive shrub, Lantana camara L. Plos One. doi: 10.1371/journal.pone.0035565 Google Scholar
  75. Thuiller W, Richardson D, Midgley G (2007) Will climate change promote alien plant invasions? In: Nentwig W (ed) Biological invasions, vol 193. Ecological studies. Springer, Heidelberg, pp 197–211. doi: 10.1007/978-3-540-36920-2_12
  76. Tyler T (2014) Critical notes on species of Hieracium (Asteraceae) reported as common to Sweden and Britain New. J Bot 4:25–32Google Scholar
  77. van der Ploeg RR, Bohm W, Kirkham MB (1999) On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci Soc Am J 63:1055–1062CrossRefGoogle Scholar
  78. Venette RC et al (2010) Pest risk maps for invasive alien species: a roadmap for improvement. Bioscience 60:349–362. doi: 10.1525/bio.2010.60.5.5 CrossRefGoogle Scholar
  79. Walther GR et al (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693. doi: 10.1016/j.tree.2009.06.008 CrossRefPubMedGoogle Scholar
  80. Webber BL et al (2011) Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Divers Distrib 17:978–1000. doi: 10.1111/j.1472-4642.2011.00811.x CrossRefGoogle Scholar
  81. Williams NSG, Holland KD (2007) The ecology and invasion history of hawkweeds (Hieracium species) in Australia. Plant Prot Q 22:76–80Google Scholar
  82. Williams PA, Nicol E, Newfield M (2000) Assessing the risk to indigenous biota from new exotic plant taxa and genetic material, vol 143. Department of Conservation, New Zealand, WellingtonGoogle Scholar
  83. Yemshanov D, Koch FH, Ducey MJ, Haack RA, Siltanen M, Wilson K (2013) Quantifying uncertainty in pest risk maps and assessments: Adopting a risk-averse decision maker’s perspective. Neobiota 18:193–218. doi: 10.3897/neobiota.18.4002 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • R. M. B. Harris
    • 1
    Email author
  • D. J. Kriticos
    • 2
    • 3
  • T. Remenyi
    • 1
  • N. Bindoff
    • 1
    • 4
    • 5
    • 6
  1. 1.Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC)University of TasmaniaHobartAustralia
  2. 2.Health and BiosecurityCSIROCanberraAustralia
  3. 3.School of Biological SciencesUniversity of QueenslandBrisbaneAustralia
  4. 4.Centre for Australian Weather and Climate Research (CAWCR)CSIRO Marine and Atmospheric ResearchHobartAustralia
  5. 5.Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartAustralia
  6. 6.ARC Centre of Excellence for Climate Systems ScienceUniversity of TasmaniaHobartAustralia

Personalised recommendations