Skip to main content

Potential contribution to the invasion process of different reproductive strategies of two invasive roses

Abstract

The type of reproductive system may be an important trait for the establishment and maintenance of populations of invasive plant species in new areas, as it can influence their demography and genetics. We studied the breeding system of two exotic invasive species, Rosa rubiginosa and R. canina, in a natural reserve in Argentina, using a combination of pollination experiments. We asked how the different reproductive modes of these species affect the quantity and quality of the fruits and seed produced. Our results show that both invasive rose species have an array of reproductive strategies, and that they are able to invade without pollinators, as they can produce seeds in the same quantity and quality through wind-pollination, self-pollination, and apomixis. Such lack of dependence on pollinators and pollination for reproduction should enhance colonization into new areas, suggesting the need of intensive monitoring of spread and dispersal. Considering that both species are successful invaders in the region, our results are in line with Baker’s rule, which posits that plants capable of uniparental reproduction are more likely to invade new areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aguirre G, Ciuffo G, Ciuffo L (2009) Genetic differentiation of Rosa rubiginosa L. in two different Argentinean ecoregions. Plant Syst Evol. doi:10.1007/s00606-009-0200-x

    Google Scholar 

  2. Baker H (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–349. doi:10.2307/2405656

    Article  Google Scholar 

  3. Barrett SCH (2002) Evolution of plant sexual diversity. Nat Rev Genet 3:274–284. doi:10.1038/nrg776

    CAS  Article  PubMed  Google Scholar 

  4. Barrett SCH (2010) Why reproductive systems matter for the invasion biology of plants. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Blackwell, Okford, pp 195–210

    Chapter  Google Scholar 

  5. Barrett SCH (2015) Foundations of invasion genetics: the Baker and Stebbins legacy. Mol Ecol 24:1927–1941. doi:10.1111/mec.13014

    Article  PubMed  Google Scholar 

  6. Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44. doi:10.1016/j.tree.2007.09.008

    Article  PubMed  Google Scholar 

  7. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1–48

    Article  Google Scholar 

  8. Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. doi:10.1016/j.tree.2011.03.023

    Article  PubMed  Google Scholar 

  9. Brown BJ, Mitchell RJ, Graham SA (2002) Competition for pollination between an invasive species (Purple loosestrife) and a native congener. Ecology 83:2328–2336. doi:10.1890/0012-9658(2002)083[2328:CFPBAI]2.0.CO;2

    Article  Google Scholar 

  10. Budde KB, Gallo L, Marchelli P et al (2010) Wide spread invasion without sexual reproduction? A case study on European willows in Patagonia, Argentina. Biol Invasions 13:45–54. doi:10.1007/s10530-010-9785-9

    Article  Google Scholar 

  11. Cavallero L, Raffaele E (2010) Fire enhances the “competition-free” space of an invader shrub: Rosa rubiginosa in northwestern Patagonia. Biol Invasions 12:3395–3404. doi:10.1007/s10530-010-9738-3

    Article  Google Scholar 

  12. Clark LV, Evans KJ, Jasieniuk M (2012) Origins and distribution of invasive Rubus fruticosus L. agg. (Rosaceae) clones in the Western United States. Biol Invasions 15:1331–1342. doi:10.1007/s10530-012-0369-8

    Article  Google Scholar 

  13. Correia M, Castro S, Ferrero V et al (2014) Reproductive biology and success of invasive Australian acacias in Portugal. Bot J Linn Soc 174:574–588. doi:10.1111/boj.12155

    Article  Google Scholar 

  14. Crawford KM, Whitney KD (2010) Population genetic diversity influences colonization success. Mol Ecol 19:1253–1263. doi:10.1111/j.1365-294X.2010.04550.x

    CAS  Article  PubMed  Google Scholar 

  15. Dalmasso A, Carretero Martinez et al (1999) Reserva natural villavicencio (Mendoza, Argentina). Plan de Manejo. Multequina 8:11–50

    Google Scholar 

  16. Damascos MA, Bran D (2006) Rosa canina (rosacea). Nueva cita para la flora de Argentina. Hickenia 3:285–288

    Google Scholar 

  17. Dellinger AS, Essl F, Hojsgaard D et al (2015) Niche dynamics of alien species do not differ among sexual and apomictic flowering plants. New Phytol 209:1313–1323. doi:10.1111/nph.13694

    Article  PubMed  PubMed Central  Google Scholar 

  18. Esler KJ, Prozesky H, Sharma GP, McGeoch M (2010) How wide is the “knowing-doing” gap in invasion biology? Biol Invasions 12:4065–4075. doi:10.1007/s10530-010-9812-x

    Article  Google Scholar 

  19. Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand Oaks, CA

    Google Scholar 

  20. Giorgis MA, Tecco PA, Cingolani AM et al (2011) Factors associated with woody alien species distribution in a newly invaded mountain system of central Argentina. Biol Invasions. doi:10.1007/s10530-010-9900-y

    Google Scholar 

  21. Hao JH, Qiang S, Chrobock T et al (2011) A test of baker’s law: breeding systems of invasive species of Asteraceae in China. Biol Invasions 13:571–580. doi:10.1007/s10530-010-9850-4

    Article  Google Scholar 

  22. Harmon-Threatt AN, Burns JH, Shemyakina LA, Knight TM (2009) Breeding system and pollination ecology of introduced plants compared to their native relatives. Am J Bot 96:1544–1550. doi:10.3732/ajb.0800369

    Article  PubMed  Google Scholar 

  23. Hatton TJ (1989) Spatial patterning of sweet briar (Rosa rubiginosa) by two vertebrate species. Aust J Ecol 14:199–205

    Article  Google Scholar 

  24. Hoffmann BD (2014) Integrating biology into invasive species management is a key principle for eradication success: the case of yellow crazy ant Anoplolepis gracilipes in northern Australia. Bull Entomol Res. doi:10.1017/S0007485314000662

    PubMed  Google Scholar 

  25. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi:10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  26. Hunter GG (1983) An assessment of the distribution of sweet brier (Rosa rubiginosa) in New Zealand. N Z J Exp Agric 11:181–188

    Google Scholar 

  27. Kandemir N, Saygili I (2015) Apomixis: new horizons in plant breeding. Turk J Agric For 39:1–8. doi:10.3906/tar-1409-74

    Article  Google Scholar 

  28. Kolar CS, Lodge DM (2001) Predicting invaders. Trends Ecol Evol 15:199–204. doi:10.1016/S0169-5347(01)02277-7

    Article  Google Scholar 

  29. Leishman MR (2001) Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos 93:294–302. doi:10.1034/j.1600-0706.2001.930212.x

    Article  Google Scholar 

  30. MacPhail VJ, Kevan PG (2007) Reproductive success and insect visitation in wild roses (Rosa spp.)—preliminary results from 2004. Acta Horticulturae 75:381–388

    Article  Google Scholar 

  31. Macphail VJ, Kevan PG (2009) Review of the breeding systems of wild roses (Rosa spp.). Floric Ornam Biotechnol 3:1–13

    Google Scholar 

  32. Memmott J, Waser NM (2002) Integration of alien plants into a native flower-pollinator visitation web. Proc Biol Sci 269:2395–2399. doi:10.1098/rspb.2002.2174

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miller AL (2004) Tetrazolium testing for flower seeds. In: McDonald MB, Kwong FY (eds) Flower seeds: biology and technology. CABI Publishing, Wallingford, pp 299–310

    Google Scholar 

  34. Moles AT, Westoby M (2006) Seed size and plant strategy across the whole life cycle. Oikos 113:91–105. doi:10.1111/j.0030-1299.2006.14194.x

    Article  Google Scholar 

  35. Montero-Castaño A, Vilá M, Ortiz-Sánchez FJ (2014) Pollination ecology of a plant in its native and introduced areas. Acta Oecol 56:1–9. doi:10.1016/j.actao.2014.01.001

    Article  Google Scholar 

  36. Moodley D, Geerts S, Richardson DM, Wilson JRU (2015) The importance of pollinators and autonomous self-fertilisation in the early stages of plant invasions: Banksia and Hakea (Proteaceae) as case studies. Plant Biol 18:124–131. doi:10.1111/plb.12334

    Article  PubMed  Google Scholar 

  37. Morales CL, Aizen MA (2006) Invasive mutualisms and the structure of plant–pollinator interactions in the temperate forests of north-west Patagonia, Argentina. J Ecol 94:171–180. doi:10.1111/j.1365-2745.2005.01069.x

    Article  Google Scholar 

  38. Olesen JM, Bascompte J, Elberling H, Jordano P (2008) Temporal dynamics in a pollination network. Ecology 89:1573–1582. doi:10.1890/07-0451.1

    Article  PubMed  Google Scholar 

  39. Pannell JR, Auld JR, Brandvain Y et al (2015) The scope of Baker’ s law. New Phytol 208:656–667. doi:10.1111/nph.13539

    Article  PubMed  Google Scholar 

  40. Parker IM (1997) Pollinator limitation of Cytisus scoparius (Scotch broom), an invasive exotic shrub. Ecology 78:1457–1470. doi:10.1890/0012-9658(1997)078[1457:PLOCSS]2.0.CO;2

    Article  Google Scholar 

  41. Pérez-Harguindeguy N, Díaz S, Garnier E et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234. doi:10.1071/BT12225

    Article  Google Scholar 

  42. Petanidou T, Godfree RC, Song DS et al (2012) Self-compatibility and plant invasiveness: comparing species in native and invasive ranges. Perspect Plant Ecol Evol Syst 14:3–12. doi:10.1016/j.ppees.2011.08.003

    Article  Google Scholar 

  43. Rambuda TD, Johnson SD (2004) Breeding systems of invasive alien plants in South Africa: does Baker’s rule apply? Divers Distrib 10:409–416. doi:10.1111/j.1366-9516.2004.00100.x

    Article  Google Scholar 

  44. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  45. Ren MX, Zhang QG, Zhang DY (2005) Random amplified polymorphic DNA markers reveal low genetic variation and a single dominant genotype in Eichhornia crassipes populations throughout China. Weed Res 45:236–244. doi:10.1111/j.1365-3180.2005.00445.x

    CAS  Article  Google Scholar 

  46. Richardson DM, Pysek P (2008) Fifty years of invasion ecology—the legacy of Charles Elton. Divers Distrib 14:161–168. doi:10.1111/j.1472-4642.2008.00464.x

    Article  Google Scholar 

  47. Richardson DM, Pysek P, Rejmanek M et al (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi:10.1046/j.1472-4642.2000.00083.x

    Article  Google Scholar 

  48. Rollins LA, Moles AT, Lam S et al (2013) High genetic diversity is not essential for successful introduction. Ecol Evol 3:4501–4517. doi:10.1002/ece3.824

    Article  PubMed  PubMed Central  Google Scholar 

  49. Roman J, Darling J (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi:10.1016/j.tree.2007.07.002

    Article  PubMed  Google Scholar 

  50. Simberloff D (2003) How much information on population biology is needed to manage introduced species? Conserv Biol 17:83–92. doi:10.1046/j.1523-1739.2003.02028.x

    Article  Google Scholar 

  51. Torres C, Mimosa M, Ferreira MF, Galetto L (2013) Reproductive strategies of Datura ferox, an abundant invasive weed in agro-ecosystems from central Argentina. Flora Morphol Distrib Funct Ecol Plants 208:253–258. doi:10.1016/j.flora.2013.03.008

    Article  Google Scholar 

  52. Traveset A, Richardson D (2014) Mutualistic interactions and biological invasions. Annu Rev Ecol Evol Syst 45:89–113. doi:10.1146/annurev-ecolsys-120213-091857

    Article  Google Scholar 

  53. Ueda Y, Akimoto S (2001) Cross-and self-compatibility in various species of the genus Rosa. J Hortic Sci Biotechnol 76:392–395. doi:10.1080/14620316.2001.11511382

    Article  Google Scholar 

  54. van Dijk P, Vijverberg K (2005) The significance of apomixis in the evolution of the angiosperms: a reappraisal. In: Bakker F (ed) Plant species-level systematics. New perspectives on pattern and process. A.R.G Gantner Verlag, Ruchel, Liechtenstein, pp 1010–1116

    Google Scholar 

  55. Van Kleunen M, Johnson SD (2007) Effects of self-compatibility on the distribution range of invasive European plants in North America. Conserv Biol 21:1537–1544. doi:10.1111/j.1523-1739.2007.00765.x

    PubMed  Google Scholar 

  56. Ward M, Johnson SD, Zalucki MP (2012) Modes of reproduction in three invasive milkweeds are consistent with Baker’s Rule. Biol Invasions 14:1237–1250. doi:10.1007/s10530-011-0152-2

    Article  Google Scholar 

  57. Werlemark G (2000) Evidence of apomixis in hemisexual dogroses, Rosa section Caninae. Sex Plant Reprod 12:353–359. doi:10.1007/s004970000028

    Article  Google Scholar 

  58. Wissemann V, Hellwig FH (1997) Reproduction and Hybridisation in the Genus Rosa, Section Caninae (Ser.) Rehd. Bot Acta 110:251–256

    Article  Google Scholar 

  59. Zimmermann H, Ritz C, Hirsch H (2010) Highly reduced genetic diversity of Rosa rubiginosa L. populations in the invasive range. Int J 171:435–446. doi:10.1086/651244

    CAS  Google Scholar 

  60. Zimmermann H, von Wehrden H, Renison D et al (2012) Shrub management is the principal driver of differing population sizes between native and invasive populations of Rosa rubiginosa L. Biol Invasions 14:2141–2157. doi:10.1007/s10530-012-0220-2

    Article  Google Scholar 

Download references

Acknowledgements

We thank the administration of Villavicencio Natural Reserve for permission to conduct this study, Hugo Debandi for his help during field work and two anonymous reviewers who help to improve the manuscript. ACM is a doctoral fellow, HJM a postdoctoral fellow and DPV a career researcher with CONICET. Research was funded through a grant from Fondo para la Investigación Científica y Tecnológica (FONCYT; PICT-2010-2779).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana Clara Mazzolari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mazzolari, A.C., Marrero, H.J. & Vázquez, D.P. Potential contribution to the invasion process of different reproductive strategies of two invasive roses. Biol Invasions 19, 615–623 (2017). https://doi.org/10.1007/s10530-016-1315-y

Download citation

Keywords

  • Apomixis
  • Breeding system
  • Pollination
  • Rosa canina
  • Rosa rubiginosa
  • Seed production