Advertisement

Biological Invasions

, Volume 19, Issue 2, pp 615–623 | Cite as

Potential contribution to the invasion process of different reproductive strategies of two invasive roses

  • Ana Clara Mazzolari
  • Hugo J. Marrero
  • Diego P. Vázquez
Original Paper

Abstract

The type of reproductive system may be an important trait for the establishment and maintenance of populations of invasive plant species in new areas, as it can influence their demography and genetics. We studied the breeding system of two exotic invasive species, Rosa rubiginosa and R. canina, in a natural reserve in Argentina, using a combination of pollination experiments. We asked how the different reproductive modes of these species affect the quantity and quality of the fruits and seed produced. Our results show that both invasive rose species have an array of reproductive strategies, and that they are able to invade without pollinators, as they can produce seeds in the same quantity and quality through wind-pollination, self-pollination, and apomixis. Such lack of dependence on pollinators and pollination for reproduction should enhance colonization into new areas, suggesting the need of intensive monitoring of spread and dispersal. Considering that both species are successful invaders in the region, our results are in line with Baker’s rule, which posits that plants capable of uniparental reproduction are more likely to invade new areas.

Keywords

Apomixis Breeding system Pollination Rosa canina Rosa rubiginosa Seed production 

Notes

Acknowledgements

We thank the administration of Villavicencio Natural Reserve for permission to conduct this study, Hugo Debandi for his help during field work and two anonymous reviewers who help to improve the manuscript. ACM is a doctoral fellow, HJM a postdoctoral fellow and DPV a career researcher with CONICET. Research was funded through a grant from Fondo para la Investigación Científica y Tecnológica (FONCYT; PICT-2010-2779).

References

  1. Aguirre G, Ciuffo G, Ciuffo L (2009) Genetic differentiation of Rosa rubiginosa L. in two different Argentinean ecoregions. Plant Syst Evol. doi: 10.1007/s00606-009-0200-x Google Scholar
  2. Baker H (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–349. doi: 10.2307/2405656 CrossRefGoogle Scholar
  3. Barrett SCH (2002) Evolution of plant sexual diversity. Nat Rev Genet 3:274–284. doi: 10.1038/nrg776 CrossRefPubMedGoogle Scholar
  4. Barrett SCH (2010) Why reproductive systems matter for the invasion biology of plants. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Blackwell, Okford, pp 195–210CrossRefGoogle Scholar
  5. Barrett SCH (2015) Foundations of invasion genetics: the Baker and Stebbins legacy. Mol Ecol 24:1927–1941. doi: 10.1111/mec.13014 CrossRefPubMedGoogle Scholar
  6. Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44. doi: 10.1016/j.tree.2007.09.008 CrossRefPubMedGoogle Scholar
  7. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1–48CrossRefGoogle Scholar
  8. Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. doi: 10.1016/j.tree.2011.03.023 CrossRefPubMedGoogle Scholar
  9. Brown BJ, Mitchell RJ, Graham SA (2002) Competition for pollination between an invasive species (Purple loosestrife) and a native congener. Ecology 83:2328–2336. doi: 10.1890/0012-9658(2002)083[2328:CFPBAI]2.0.CO;2 CrossRefGoogle Scholar
  10. Budde KB, Gallo L, Marchelli P et al (2010) Wide spread invasion without sexual reproduction? A case study on European willows in Patagonia, Argentina. Biol Invasions 13:45–54. doi: 10.1007/s10530-010-9785-9 CrossRefGoogle Scholar
  11. Cavallero L, Raffaele E (2010) Fire enhances the “competition-free” space of an invader shrub: Rosa rubiginosa in northwestern Patagonia. Biol Invasions 12:3395–3404. doi: 10.1007/s10530-010-9738-3 CrossRefGoogle Scholar
  12. Clark LV, Evans KJ, Jasieniuk M (2012) Origins and distribution of invasive Rubus fruticosus L. agg. (Rosaceae) clones in the Western United States. Biol Invasions 15:1331–1342. doi: 10.1007/s10530-012-0369-8 CrossRefGoogle Scholar
  13. Correia M, Castro S, Ferrero V et al (2014) Reproductive biology and success of invasive Australian acacias in Portugal. Bot J Linn Soc 174:574–588. doi: 10.1111/boj.12155 CrossRefGoogle Scholar
  14. Crawford KM, Whitney KD (2010) Population genetic diversity influences colonization success. Mol Ecol 19:1253–1263. doi: 10.1111/j.1365-294X.2010.04550.x CrossRefPubMedGoogle Scholar
  15. Dalmasso A, Carretero Martinez et al (1999) Reserva natural villavicencio (Mendoza, Argentina). Plan de Manejo. Multequina 8:11–50Google Scholar
  16. Damascos MA, Bran D (2006) Rosa canina (rosacea). Nueva cita para la flora de Argentina. Hickenia 3:285–288Google Scholar
  17. Dellinger AS, Essl F, Hojsgaard D et al (2015) Niche dynamics of alien species do not differ among sexual and apomictic flowering plants. New Phytol 209:1313–1323. doi: 10.1111/nph.13694 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Esler KJ, Prozesky H, Sharma GP, McGeoch M (2010) How wide is the “knowing-doing” gap in invasion biology? Biol Invasions 12:4065–4075. doi: 10.1007/s10530-010-9812-x CrossRefGoogle Scholar
  19. Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand Oaks, CAGoogle Scholar
  20. Giorgis MA, Tecco PA, Cingolani AM et al (2011) Factors associated with woody alien species distribution in a newly invaded mountain system of central Argentina. Biol Invasions. doi: 10.1007/s10530-010-9900-y Google Scholar
  21. Hao JH, Qiang S, Chrobock T et al (2011) A test of baker’s law: breeding systems of invasive species of Asteraceae in China. Biol Invasions 13:571–580. doi: 10.1007/s10530-010-9850-4 CrossRefGoogle Scholar
  22. Harmon-Threatt AN, Burns JH, Shemyakina LA, Knight TM (2009) Breeding system and pollination ecology of introduced plants compared to their native relatives. Am J Bot 96:1544–1550. doi: 10.3732/ajb.0800369 CrossRefPubMedGoogle Scholar
  23. Hatton TJ (1989) Spatial patterning of sweet briar (Rosa rubiginosa) by two vertebrate species. Aust J Ecol 14:199–205CrossRefGoogle Scholar
  24. Hoffmann BD (2014) Integrating biology into invasive species management is a key principle for eradication success: the case of yellow crazy ant Anoplolepis gracilipes in northern Australia. Bull Entomol Res. doi: 10.1017/S0007485314000662 PubMedGoogle Scholar
  25. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi: 10.1002/bimj.200810425 CrossRefPubMedGoogle Scholar
  26. Hunter GG (1983) An assessment of the distribution of sweet brier (Rosa rubiginosa) in New Zealand. N Z J Exp Agric 11:181–188Google Scholar
  27. Kandemir N, Saygili I (2015) Apomixis: new horizons in plant breeding. Turk J Agric For 39:1–8. doi: 10.3906/tar-1409-74 CrossRefGoogle Scholar
  28. Kolar CS, Lodge DM (2001) Predicting invaders. Trends Ecol Evol 15:199–204. doi: 10.1016/S0169-5347(01)02277-7 CrossRefGoogle Scholar
  29. Leishman MR (2001) Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos 93:294–302. doi: 10.1034/j.1600-0706.2001.930212.x CrossRefGoogle Scholar
  30. MacPhail VJ, Kevan PG (2007) Reproductive success and insect visitation in wild roses (Rosa spp.)—preliminary results from 2004. Acta Horticulturae 75:381–388CrossRefGoogle Scholar
  31. Macphail VJ, Kevan PG (2009) Review of the breeding systems of wild roses (Rosa spp.). Floric Ornam Biotechnol 3:1–13Google Scholar
  32. Memmott J, Waser NM (2002) Integration of alien plants into a native flower-pollinator visitation web. Proc Biol Sci 269:2395–2399. doi: 10.1098/rspb.2002.2174 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Miller AL (2004) Tetrazolium testing for flower seeds. In: McDonald MB, Kwong FY (eds) Flower seeds: biology and technology. CABI Publishing, Wallingford, pp 299–310Google Scholar
  34. Moles AT, Westoby M (2006) Seed size and plant strategy across the whole life cycle. Oikos 113:91–105. doi: 10.1111/j.0030-1299.2006.14194.x CrossRefGoogle Scholar
  35. Montero-Castaño A, Vilá M, Ortiz-Sánchez FJ (2014) Pollination ecology of a plant in its native and introduced areas. Acta Oecol 56:1–9. doi: 10.1016/j.actao.2014.01.001 CrossRefGoogle Scholar
  36. Moodley D, Geerts S, Richardson DM, Wilson JRU (2015) The importance of pollinators and autonomous self-fertilisation in the early stages of plant invasions: Banksia and Hakea (Proteaceae) as case studies. Plant Biol 18:124–131. doi: 10.1111/plb.12334 CrossRefPubMedGoogle Scholar
  37. Morales CL, Aizen MA (2006) Invasive mutualisms and the structure of plant–pollinator interactions in the temperate forests of north-west Patagonia, Argentina. J Ecol 94:171–180. doi: 10.1111/j.1365-2745.2005.01069.x CrossRefGoogle Scholar
  38. Olesen JM, Bascompte J, Elberling H, Jordano P (2008) Temporal dynamics in a pollination network. Ecology 89:1573–1582. doi: 10.1890/07-0451.1 CrossRefPubMedGoogle Scholar
  39. Pannell JR, Auld JR, Brandvain Y et al (2015) The scope of Baker’ s law. New Phytol 208:656–667. doi: 10.1111/nph.13539 CrossRefPubMedGoogle Scholar
  40. Parker IM (1997) Pollinator limitation of Cytisus scoparius (Scotch broom), an invasive exotic shrub. Ecology 78:1457–1470. doi: 10.1890/0012-9658(1997)078[1457:PLOCSS]2.0.CO;2 CrossRefGoogle Scholar
  41. Pérez-Harguindeguy N, Díaz S, Garnier E et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234. doi: 10.1071/BT12225 CrossRefGoogle Scholar
  42. Petanidou T, Godfree RC, Song DS et al (2012) Self-compatibility and plant invasiveness: comparing species in native and invasive ranges. Perspect Plant Ecol Evol Syst 14:3–12. doi: 10.1016/j.ppees.2011.08.003 CrossRefGoogle Scholar
  43. Rambuda TD, Johnson SD (2004) Breeding systems of invasive alien plants in South Africa: does Baker’s rule apply? Divers Distrib 10:409–416. doi: 10.1111/j.1366-9516.2004.00100.x CrossRefGoogle Scholar
  44. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  45. Ren MX, Zhang QG, Zhang DY (2005) Random amplified polymorphic DNA markers reveal low genetic variation and a single dominant genotype in Eichhornia crassipes populations throughout China. Weed Res 45:236–244. doi: 10.1111/j.1365-3180.2005.00445.x CrossRefGoogle Scholar
  46. Richardson DM, Pysek P (2008) Fifty years of invasion ecology—the legacy of Charles Elton. Divers Distrib 14:161–168. doi: 10.1111/j.1472-4642.2008.00464.x CrossRefGoogle Scholar
  47. Richardson DM, Pysek P, Rejmanek M et al (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi: 10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  48. Rollins LA, Moles AT, Lam S et al (2013) High genetic diversity is not essential for successful introduction. Ecol Evol 3:4501–4517. doi: 10.1002/ece3.824 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Roman J, Darling J (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi: 10.1016/j.tree.2007.07.002 CrossRefPubMedGoogle Scholar
  50. Simberloff D (2003) How much information on population biology is needed to manage introduced species? Conserv Biol 17:83–92. doi: 10.1046/j.1523-1739.2003.02028.x CrossRefGoogle Scholar
  51. Torres C, Mimosa M, Ferreira MF, Galetto L (2013) Reproductive strategies of Datura ferox, an abundant invasive weed in agro-ecosystems from central Argentina. Flora Morphol Distrib Funct Ecol Plants 208:253–258. doi: 10.1016/j.flora.2013.03.008 CrossRefGoogle Scholar
  52. Traveset A, Richardson D (2014) Mutualistic interactions and biological invasions. Annu Rev Ecol Evol Syst 45:89–113. doi: 10.1146/annurev-ecolsys-120213-091857 CrossRefGoogle Scholar
  53. Ueda Y, Akimoto S (2001) Cross-and self-compatibility in various species of the genus Rosa. J Hortic Sci Biotechnol 76:392–395. doi: 10.1080/14620316.2001.11511382 CrossRefGoogle Scholar
  54. van Dijk P, Vijverberg K (2005) The significance of apomixis in the evolution of the angiosperms: a reappraisal. In: Bakker F (ed) Plant species-level systematics. New perspectives on pattern and process. A.R.G Gantner Verlag, Ruchel, Liechtenstein, pp 1010–1116Google Scholar
  55. Van Kleunen M, Johnson SD (2007) Effects of self-compatibility on the distribution range of invasive European plants in North America. Conserv Biol 21:1537–1544. doi: 10.1111/j.1523-1739.2007.00765.x PubMedGoogle Scholar
  56. Ward M, Johnson SD, Zalucki MP (2012) Modes of reproduction in three invasive milkweeds are consistent with Baker’s Rule. Biol Invasions 14:1237–1250. doi: 10.1007/s10530-011-0152-2 CrossRefGoogle Scholar
  57. Werlemark G (2000) Evidence of apomixis in hemisexual dogroses, Rosa section Caninae. Sex Plant Reprod 12:353–359. doi: 10.1007/s004970000028 CrossRefGoogle Scholar
  58. Wissemann V, Hellwig FH (1997) Reproduction and Hybridisation in the Genus Rosa, Section Caninae (Ser.) Rehd. Bot Acta 110:251–256CrossRefGoogle Scholar
  59. Zimmermann H, Ritz C, Hirsch H (2010) Highly reduced genetic diversity of Rosa rubiginosa L. populations in the invasive range. Int J 171:435–446. doi: 10.1086/651244 Google Scholar
  60. Zimmermann H, von Wehrden H, Renison D et al (2012) Shrub management is the principal driver of differing population sizes between native and invasive populations of Rosa rubiginosa L. Biol Invasions 14:2141–2157. doi: 10.1007/s10530-012-0220-2 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ana Clara Mazzolari
    • 1
  • Hugo J. Marrero
    • 1
  • Diego P. Vázquez
    • 1
    • 2
  1. 1.Instituto Argentino de Investigaciones de las Zonas ÁridasMendozaArgentina
  2. 2.Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de CuyoMendozaArgentina

Personalised recommendations