Interspecific competition between alien Pallas’s squirrels and Eurasian red squirrels reduces density of the native species

Abstract

When alien species introduced into a new environment have a strong niche overlap with ecologically similar native species, interspecific competition can cause a decrease in abundance and distribution of native species. Pallas’s squirrel (Callosciurus erythraeus) was introduced in Northern Italy where it currently co-occurs with native Eurasian red squirrels (Sciurus vulgaris). The alien species is known for its invasiveness but so far negative effects of Pallas’s squirrels on native tree squirrels have not been demonstrated. Here, we compare demographic parameters of red squirrel populations between sites without (red-only sites) and with (red-Pallas’s sites) C. erythraeus and present results of trapping and removal of Pallas’s squirrel and its effects on red squirrel population dynamics. The native species was patchily distributed and absent in many trapping sites occupied by the Pallas’s squirrel. Red squirrels occurred at much lower densities and showed reduced adult survival in areas of co-occurrence than in red-only sites, but there were no differences in reproductive rate. Removing invasive squirrels throughout the study period resulted in re-colonisation by the native species only in some trapping sites, and several alternatives to explain the lack of a marked increase in population size are discussed. This study is the first to provide evidence that presence of Pallas’s squirrel reduces viability of local red squirrel populations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adriaens T, Baert K, Breyne P et al (2015) Successful eradication of a suburban Pallas’s squirrel Callosciurus erythraeus (Pallas 1779) (Rodentia, Sciuridae) population in Flanders (northern Belgium). Biol Invasions 17:2517–2526. doi:10.1007/s10530-015-0898-z

    Article  Google Scholar 

  2. Aprile G, Chicco D (1999) Nueva especie exotica de mamifero en la Argentina: la ardilla de vientre rojo. Mastozool Neotrop 6:7–14

    Google Scholar 

  3. Baillargeon S, Rivest L-P (2007) Rcapture: loglinear models for capture-recapture in R. J Stat Softw 19:1–31

    Article  Google Scholar 

  4. Bertolino S (2008) Introduction of the American grey squirrel (Sciurus carolinensis) in Europe: a case study in biological invasion. Curr Sci 95:903–906

    Google Scholar 

  5. Bertolino S (2009) Animal trade and non-indigenous species introduction: the world-wide spread of squirrels. Divers Distrib 15:701–708. doi:10.1111/j.1472-4642.2009.00574.x

    Article  Google Scholar 

  6. Bertolino S, Lurz PWW (2013) Callosciurus squirrels: worldwide introductions, ecological impacts and recommendations to prevent the establishment of new invasive populations. Mammal Rev 43:22–33. doi:10.1111/j.1365-2907.2011.00204.x

    Article  Google Scholar 

  7. Bosch S, Lurz PW (2012) The Eurasian red squirrel: Sciurus Vulgaris. Westarp Wissenschaften-Verlagsgesellschaft, Hohenwarsleben

    Google Scholar 

  8. Boutin S, Wauters LA, McAdam AG, Humphries MM, Tosi G, Dhondt AA (2006) Anticipatory reproduction and population growth in seed predators. Science 314:1928–1930. doi:10.1126/science.1135520

    CAS  Article  PubMed  Google Scholar 

  9. Broennimann O, Treier UA, Müller-Schärer H et al (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709. doi:10.1111/j.1461-0248.2007.01060.x

    CAS  Article  PubMed  Google Scholar 

  10. Byers JE (2000) Competition between two estuarine snails: implications for invasions of exotic species. Ecology 81:1225–1239. doi:10.2307/177203

    Article  Google Scholar 

  11. Cagnin M, Aloise G, Fiore F et al (2000) Habitat use and population density of the red squirrel, Sciurus vulgaris meridionalis, in the Sila Grande mountain range (Calabria, South Italy). Ital J Zool 67:81–87. doi:10.1080/11250000009356299

    Article  Google Scholar 

  12. Chapuis J-L, Dozieres A, Pisanu B, et al (2011) Plan national de lutte relatif à l’écureuil à ventre rouge (Callosciurus erythraeus) dans les Alpes-Maritimes. Muséum National d’Histoire Naturelle, Paris, Muséum d’Histoire Naturelle de Nice, DREAL Provence-Alpes-Côte d’Azur

  13. Close B, Banister K, Baumans V et al (1996) Recommendations for euthanasia of experimental animals: part 1. Lab Anim 30:293–316

    CAS  Article  PubMed  Google Scholar 

  14. Close B, Banister K, Baumans V et al (1997) Recommendations for euthanasia of experimental animals: part 2. Lab Anim 31:1–32

    CAS  Article  PubMed  Google Scholar 

  15. Cox DR (1972) Regression models and life-tables. J R Stat Soc Ser B Methodol 34:187–220

    Google Scholar 

  16. Edelman AJ, Koprowski JL (2005) Introduced Abert’s squirrels in the Pinaleño Mountains: a review of their natural history and potential impacts on the red squirrel. In: Sanderson HR, Koprowski JL (eds) Proceedings of the endangered Mount Graham red squirrel symposium. University of Arizona Press, Tucson

    Google Scholar 

  17. Edelman AJ, Koprowski JL (2006) Seasonal changes in home ranges of Abert’s squirrels: impact of mating season. Can J Zool 84:404–411. doi:10.1139/z06-009

    Article  Google Scholar 

  18. Emmons LH (1980) Ecology and resource partitioning among nine species of African rain forest squirrels. Ecol Monogr 50:31–54. doi:10.2307/2937245

    Article  Google Scholar 

  19. Ferner JW (1974) Habitat Relationships of Tamiasciurus hudsonicus and Sciurus aberti in the Rocky Mountains. Southwest Nat 18:470–473. doi:10.2307/3670306

    Article  Google Scholar 

  20. Genovesi P, Carnevali L, Alonzi A, Scalera R (2012) Alien mammals in Europe: updated numbers and trends, and assessment of the effects on biodiversity. Integr Zool 7:247–253. doi:10.1111/j.1749-4877.2012.00309.x

    Article  PubMed  Google Scholar 

  21. Gould WR, Pollock KH (1997) Catch-effort maximum likelihood estimation of important population parameters. Can J Fish Aquat Sci 54:890–897. doi:10.1139/f96-327

    Google Scholar 

  22. Guichón ML, Doncaster PC (2008) Invasion dynamics of an introduced squirrel in Argentina. Ecography 31:211–220. doi:10.1111/j.2007.0906-7590.05308.x

    Article  Google Scholar 

  23. Gurnell J (1987) Natural History of Squirrels. Christopher Helm Publishers Ltd, London

    Google Scholar 

  24. Gurnell J, Wauters LA, Lurz PWW, Tosi G (2004) Alien species and interspecific competition: effects of introduced eastern grey squirrels on red squirrel population dynamics. J Anim Ecol 73:26–35

    Article  Google Scholar 

  25. Gurnell J, Lurz PWW, Wauters AL (2015) Years of interactions and conflict in Europe: competition between Eurasian red squirrels and North American grey squirrel. In: Shuttleworth CM, Lurz PWW, Hayward MW (eds) Red squirrels: ecology, conservation & management in Europe. England, pp 19–37

  26. Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    CAS  Article  PubMed  Google Scholar 

  27. Holway DA (1999) Competitive mechanisms underlying the displacement of native ants by the invasive argentine ant. Ecology 80:238–251. doi:10.2307/176993

    Article  Google Scholar 

  28. Hori M, Yamada M, Tsunoda N (2006) Line census and gnawing damage of introduced Formosan squirrels (Callosciurus erythraeus taiwanensis) in urban forests of Kamakura, Kanagawa, Japan. Assessment and control of biological invasion risks. Shoukadoh Book Sellers, IUCN, Kyoto and Gland, pp 204–209

    Google Scholar 

  29. Jeschke JM, Strayer DL (2005) Invasion success of vertebrates in Europe and North America. Proc Natl Acad Sci USA 102:7198–7202. doi:10.1073/pnas.0501271102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481. doi:10.2307/2281868

    Article  Google Scholar 

  31. Kenward RE, Hodder KH, Rose RJ et al (1998) Comparative demography of red squirrels (Sciurus vulgaris) and grey squirrels (Sciurus carolinensis) in deciduous and conifer woodland. J Zool 244:7–21. doi:10.1111/j.1469-7998.1998.tb00002.x

    Article  Google Scholar 

  32. Krebs CJ (1999) Ecological methodology. Benjamin/Cummings, Menlo Park

    Google Scholar 

  33. Leary S, Underwood W, Anthony R, et al (2013) AVMA guidelines for the euthanasia of animals: 2013 edition

  34. Leslie PH, Davis DHS (1939) An attempt to determine the absolute number of rats on a given area. J Anim Ecol 8:94–113. doi:10.2307/1255

    Article  Google Scholar 

  35. Lomolino MV, Brown JH, Davis R (1989) Island biogeograhy of montane forest mammals in the American southwest. Ecology 70:180–194. doi:10.2307/1938425

    Article  Google Scholar 

  36. Long JL (2003) Introduced mammals of the world. Their History, Distribution and Influence. CSIRO Publishing. Wallingford, United Kingdom

  37. Lurz PWW, Garson PJ, Wauters LA (2000) Effects of temporal and spatial variations in food supply on the space and habitat use of red squirrels (Sciurus vulgaris L.). J Zool 251:167–178. doi:10.1111/j.1469-7998.2000.tb00601.x

    Article  Google Scholar 

  38. Mari V, Martini S, Romeo C et al (2008) Record litter size in the Eurasian Red Squirrel (Sciurus vulgaris). Hystrix Ital J Mammal 19:61–65

    Google Scholar 

  39. Martinoli A, Bertolino S, Preatoni DG et al (2010) Headcount 2010: the multiplication of the grey squirrel populations introduced to Italy. Hystrix Ital J Mammal 21:127–136

    Google Scholar 

  40. Mayle B, Ferryman M, Harry P (2007) Controlling Grey Squirrel Damage to Woodlands. Forestry Authority, UK

    Google Scholar 

  41. Mazzamuto MV, Panzeri M, Wauters L et al (2015) Knowledge, management and optimization: the use of live traps in control of non-native squirrels. Mammalia 80:305–311. doi:10.1515/mammalia-2015-0006

    Google Scholar 

  42. Mazzamuto MV, Galimberti A, Cremonesi G et al (2016a) Preventing species invasion: a role for integrative taxonomy? Integr Zool 11:214–228. doi:10.1111/1749-4877.12185

    Article  PubMed  Google Scholar 

  43. Mazzamuto MV, Pisanu B, Romeo C et al (2016b) Poor parasite community of an invasive alien species: macroparasites of Pallas’s squirrel in Italy. Ann Zool Fenn 53:103–112. doi:10.5735/086.053.0209

    Article  Google Scholar 

  44. Miyamoto A, Tamura N, Sugimura K, Yamada F (2004) Predicting habitat distribution of the alien Formosan squirrel using logistic regression model. Glob Environ Res 8:13–22

    Google Scholar 

  45. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci 98:5446–5451. doi:10.1073/pnas.091093398

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Nelson GA (2015) Fishmethods: fishery science methods and models in R

  47. Paini DR, Funderburk JE, Reitz SR (2008) Competitive exclusion of a worldwide invasive pest by a native. Quantifying competition between two phytophagous insects on two host plant species. J Anim Ecol 77:184–190. doi:10.1111/j.1365-2656.2007.01324.x

    Article  PubMed  Google Scholar 

  48. Palmer GH, Koprowski J, Pernas T (2007) Tree squirrels as invasive species: conservation and management implications. In: Witmer GW, Pitt WC, Fagerstone KA (eds) Managing vertebrate invasive species: proceedings of an international symposium. USDA/APHIS Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA

  49. Parker JD, Torchin ME, Hufbauer RA et al (2013) Do invasive species perform better in their new ranges? Ecology 94:985–994

    Article  PubMed  Google Scholar 

  50. Paterson RA, Dick JTA, Pritchard DW et al (2015) Predicting invasive species impacts: a community module functional response approach reveals context dependencies. J Anim Ecol 84:453–463. doi:10.1111/1365-2656.12292

    Article  PubMed  Google Scholar 

  51. Petty SJ, Lurz PW, Rushton SP (2003) Predation of red squirrels by northern goshawks in a conifer forest in northern England: can this limit squirrel numbers and create a conservation dilemma? Biol Cons 111:105–114. doi:10.1016/S0006-3207(02)00254-9

    Article  Google Scholar 

  52. Prigioni C, Cantini M, Zilio A (2001) Atlante dei Mammiferi della Lombardia, 2001st edn. Regione Lombardia e Università degli Studi di Pavia

  53. Ricciardi A, Neves RJ, Rasmussen JB (1998) Impending extinctions of North American freshwater Mussels (Unionoida) following the Zebra Mussel (Dreissena polymorpha) invasion. J Anim Ecol 67:613–619

    Article  Google Scholar 

  54. Riege DA (1991) Habitat specialization and social factors in distribution of red and gray squirrels. J Mammal 72:152–162. doi:10.2307/1381990

    Article  Google Scholar 

  55. Rivest L-P, Baillargeon S (2014) Capture-recapture methods for estimating the size of a population: dealing with variable capture probabilities. In: Statistics in action: a Canadian outlook. CRC Press, pp 289–304

  56. Romeo C, Ferrari N, Lanfranchi P et al (2015) Biodiversity threats from outside to inside: effects of alien grey squirrel (Sciurus carolinensis) on helminth community of native red squirrel (Sciurus vulgaris). Parasitol Res 114:2621–2628. doi:10.1007/s00436-015-4466-3

    Article  PubMed  Google Scholar 

  57. Rushton SP, Gurnell J, Lurz PWW, Fuller RM (2002) Modeling impacts and costs of gray squirrel control regimes on the viability of red squirrel populations. J Wildl Manag 66:683–697. doi:10.2307/3803135

    Article  Google Scholar 

  58. Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  59. Santicchia F, Romeo C, Grilli G et al (2015a) The use of uterine scars to explore fecundity levels in invasive alien tree squirrels. Hystrix Ital J Mammal 26:95–101

    Google Scholar 

  60. Santicchia F, Romeo C, Martinoli A et al (2015b) Effects of habitat quality on parasite abundance: do forest fragmentation and food availability affect helminth infection in the Eurasian red squirrel? J Zool 296:38–44. doi:10.1111/jzo.12215

    Article  Google Scholar 

  61. Shuttleworth CM, Lurz PWW, Hayward MW (2015) Red Squirrels: ecology, conservation and management in Europe. European Squirrel Initiative, Woodbridge

    Google Scholar 

  62. Smout S, Asseburg C, Matthiopoulos J et al (2010) The functional response of a generalist predator. PLoS ONE 5:e10761. doi:10.1371/journal.pone.0010761

    Article  PubMed  PubMed Central  Google Scholar 

  63. Strong DR, Pemberton RW (2000) Biological control of invading species-risk and reform. Science 288:1969–1970. doi:10.1126/science.288.5473.1969

    CAS  Article  PubMed  Google Scholar 

  64. Stuyck J, Baert K, Breyne P, Adriaens T (2009) Invasion history and control of a Pallas squirrel Callosciurus erythraeus population in Dadizele, Belgium. In: Proceedings of the science facing Aliens conference brussels. Belgian Biodiversity Platform, Brussels, Belgium

  65. Tamura N, Hayashi F, Miyashita K (1988) Dominance hierarchy and mating behavior of the formosan squirrel, Callosciurus erythraeus thaiwanensis. J Mammal 69:320. doi:10.2307/1381382

    Article  Google Scholar 

  66. Tamura N, Hayashi F, Miyashita K (1989) Spacing and kinship in the Formosan squirrel living in different habitats. Oecologia 79:344–352

    CAS  Article  PubMed  Google Scholar 

  67. QGIS Development Team (2015) Quantum GIS. Open Source Geospatial Foundation Project

  68. Thorington RWJ, Koprowski JL, Steele MA, Whatton JF (2012) Squirrels of the World. Johns Hopkins University Press, Baltimore

    Google Scholar 

  69. Tompkins DM, Poulin R (2006) Parasites and biological invasions. Biological invasions in New Zealand. Springer, Berlin, pp 67–84

    Google Scholar 

  70. Tonkin M, Mackenzie I, House H (2011) The evaluation of grey squirrel control in the Saving Scotland’s Red Squirrel partnership project. Report available at: http://www.scottishsquirrels.org.uk/docs/008__042__general__Saving_Scotlands_Red_Squirrels_Evaluation_Report_Final__1347452857.pdf

  71. Tosi G, Zilio A (2002) Conoscenza delle risorse ambientali della provincia di Varese. Settore politiche per l’agricoltura e gestione faunistica, Provincia di Varese

    Google Scholar 

  72. Wauters LA, Dhondt AA (1990) Red squirrel population dynamics in different habitats. Z Säugetierkd 55:161–175

    Google Scholar 

  73. Wauters LA, Dhondt AA (1995) Lifetime reproductive success and its correlates in female Eurasian red squirrels. Oikos 72:402–410. doi:10.2307/3546126

    Article  Google Scholar 

  74. Wauters LA, Lens L (1995) Effects of Food Availability and Density on Red Squirrel (Sciurus vulgaris) Reproduction. Ecology 76:2460–2469. doi:10.2307/2265820

    Article  Google Scholar 

  75. Wauters LA, Dhondt AA, Knothe H, Parkin DT (1996) Fluctuating asymmetry and body size as indicators of stress in red squirrel populations in woodland fragments. J Appl Ecol 33:735–740. doi:10.2307/2404944

    Article  Google Scholar 

  76. Wauters LA, Lurz PWW, Gurnell J (2000) Interspecific effects of grey squirrels (Sciurus carolinensis) on the space use and population demography of red squirrels (Sciurus vulgaris) in conifer plantations. Ecol Res 15:271–284. doi:10.1046/j.1440-1703.2000.00354.x

    Article  Google Scholar 

  77. Wauters LA, Gurnell J, Martinoli A, Tosi G (2001a) Does interspecific competition with introduced grey squirrels affect foraging and food choice of Eurasian red squirrels? Anim Behav 61:1079–1091. doi:10.1006/anbe.2001.1703

    Article  Google Scholar 

  78. Wauters LA, Gurnell J, Preatoni D, Tosi G (2001b) Effects of spatial variation in food availability on spacing behaviour and demography of Eurasian red squirrels. Ecography 24:525–538. doi:10.1111/j.1600-0587.2001.tb00487.x

    Article  Google Scholar 

  79. Wauters LA, Matthysen E, Adriaensen F, Tosi G (2004) Within-sex density dependence and population dynamics of red squirrels Sciurus vulgaris. J Anim Ecol 73:11–25

    Article  Google Scholar 

  80. Wauters AL, Vermeulen M, Van Dongen S et al (2007) Effects of spatio-temporal variation in food supply on red squirrel Sciurus vulgaris body size and body mass and its consequences for some fitness components. Ecography 30:51–65. doi:10.1111/j.2006.0906-7590.04646.x

    Article  Google Scholar 

  81. Wauters AL, Githiru M, Bertolino S et al (2008) Demography of alpine red squirrel populations in relation to fluctuations in seed crop size. Ecography 31:104–114. doi:10.1111/j.2007.0906-7590.05251.x

    Article  Google Scholar 

  82. Wauters LA, Verbeylen G, Preatoni D et al (2010) Dispersal and habitat cuing of Eurasian red squirrels in fragmented habitats. Popul Ecol 52:527–536. doi:10.1007/s10144-010-0203-z

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Regione Lombardia, Provincia di Varese, Parco Pineta and all the students involved in the survey. A special thanks to A. Molinari, M. Morandini, G. Zardoni and F. Santicchia. We would like to thank both reviewers for their insightful comments on the paper, as these comments led us to an improvement of the work. This work was supported by the EU and realized under the LIFE09 NAT/IT/000095 EC-SQUARE Project. This is paper n. 12 of the ECSQUARE project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Vittoria Mazzamuto.

Ethics declarations

Ethical standards

All appropriate ethics for the animal welfare were followed during the research in accordance with EC and AVMA guidelines (Close et al. 1996, 1997; Leary et al. 2013).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mazzamuto, M.V., Bisi, F., Wauters, L.A. et al. Interspecific competition between alien Pallas’s squirrels and Eurasian red squirrels reduces density of the native species. Biol Invasions 19, 723–735 (2017). https://doi.org/10.1007/s10530-016-1310-3

Download citation

Keywords

  • Callosciurus erythraeus
  • Eradication
  • Population density
  • Replacement competition
  • Robust design models
  • Unbalanced study design