Biological Invasions

, Volume 19, Issue 1, pp 255–267 | Cite as

Invasion genetics of Senecio vulgaris: loss of genetic diversity characterizes the invasion of a selfing annual, despite multiple introductions

  • Bi-Ru Zhu
  • Spencer C. H. Barrett
  • Da-Yong Zhang
  • Wan-Jin Liao
Original Paper


Genetic variation in invasive populations is affected by a variety of processes including stochastic forces, multiple introductions, population dynamics and mating system. Here, we compare genetic diversity between native and invasive populations of the selfing, annual plant Senecio vulgaris to infer the relative importance of genetic bottlenecks, multiple introductions, post-introduction genetic drift and gene flow to genetic diversity in invasive populations. We scored multilocus genotypes at eight microsatellite loci from nine native European and 19 Chinese introduced populations and compared heterozygosity and number of alleles between continents. We inferred possible source populations for introduced populations by performing assignment analyses and evaluated the relative contributions of gene flow and genetic drift to genetic diversity based on correlations of pairwise genetic and geographic distance. Genetic diversity within Chinese populations was significantly reduced compared to European populations indicating genetic bottlenecks accompanying invasion. Assignment tests provided support for multiple introductions with populations from Central China and southwestern China descended from genotypes matching those from Switzerland and the UK, respectively. Genetic differentiation among populations in China and Europe was not correlated with geographic distance. However, European populations exhibited less variation in the relation between G ST and geographical distance than populations in China. These results suggest that gene flow probably plays a more significant role in structuring genetic diversity in native populations, whereas genetic drift appears to predominate in introduced populations. High rates of selfing in Chinese populations may restrict opportunities for pollen-mediated gene flow. Repeated colonization-extinction cycles associated with ongoing invasion is likely to maintain low genetic diversity in Chinese populations.


Gene flow Genetic diversity Genetic drift Multiple introductions Selfing 



We thank Yong-Ming Yuan, Chen Xia, Dun-Yan Tan, and Quan-Guo Zhang for sampling and help with molecular analyses. Our work was supported by the National Natural Science Foundation of China (31421063), the 111 Project (B13008), the open project of the State Key Laboratory of Earth Surface Processes and Resource Ecology, and Fundamental Research Funds for Central Universities. A Discovery Grant from the Natural Sciences and Engineering Research Council of Canada supported the contribution of Spencer C.H. Barrett to this research.

Supplementary material

10530_2016_1277_MOESM1_ESM.docx (145 kb)
Supplementary material 1 (DOCX 145 kb)


  1. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30. doi: 10.1046/j.1523-1739.2003.02365.x CrossRefGoogle Scholar
  2. Ashton PA, Abbott RJ (1992) Isozyme evidence and the origin of Senecio vulgaris (Compositea). Plant Syst Evol 179:167–174. doi: 10.1007/bf00937594 CrossRefGoogle Scholar
  3. Baker HG (1967) Support for Baker’s Law as a rule. Evolution 21:853–856. doi: 10.2307/2406780 CrossRefGoogle Scholar
  4. Barrett SCH (2011) Why reproductive systems matter for the invasion biology of plants. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Oxford University Press, Oxford, pp 195–210Google Scholar
  5. Barrett SCH (2015) Foundations of invasion genetics: the Baker and Stebbins legacy. Mol Ecol 24:1927–1941. doi: 10.1111/mec.13014 CrossRefPubMedGoogle Scholar
  6. Barrett SCH, Husband BC (1990) Genetics of plant migration and colonization. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Massachusetts, pp 254–277Google Scholar
  7. Barrett SCH, Colautti RI, Eckert CG (2008) Plant reproductive systems and evolution during biological invasion. Mol Ecol 17:373–383. doi: 10.1111/j.1365-294X.2007.03503.x CrossRefPubMedGoogle Scholar
  8. Barrett SCH, Colautti RI, Dlugosch KM, Rieseberg LH (forthcoming) Invasion genetics: the Baker and Stebbings legacy. Wiley-Blackwell, OxfordGoogle Scholar
  9. Bock DG, Caseys C, Cousens RD et al (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297. doi: 10.1111/mec.13032 CrossRefPubMedGoogle Scholar
  10. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11. doi: 10.1007/s00442-005-0070-z CrossRefPubMedGoogle Scholar
  11. Brown AHD (1984) Multilocus organization of plant populations. In: Wöhrmann K, Loeschcke V (eds) Population biology and evolution. Springer, Berlin, pp 159–169. doi: 10.1007/978-3-642-69646-6_13 CrossRefGoogle Scholar
  12. Campbell JM, Abbott RJ (1976) Variability of outcrossing frequency in Senecis vulgaris L. Heredity 36:267–274. doi: 10.1038/hdy.1976.31 CrossRefGoogle Scholar
  13. Charlesworth D, Wright SI (2001) Breeding systems and genome evolution. Curr Opin Genet Dev 11:685–690. doi: 10.1016/s0959-437x(00)00254-9 CrossRefPubMedGoogle Scholar
  14. De Groot GA, During HJ, Ansell SW et al (2012) Diverse spore rains and limited local exchange shape fern genetic diversity in a recently created habitat colonized by long-distance dispersal. Ann Bot 109:965–978. doi: 10.1093/aob/mcs013 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi: 10.1111/j.1365-294X.2007.03538.x CrossRefPubMedGoogle Scholar
  16. Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  17. Duchesne P, Bernatchez L (2002) AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2:380–383. doi: 10.1046/j.1471-8278.2002.00251.x CrossRefGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  19. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  20. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578. doi: 10.1111/j.1471-8286.2007.01758.x CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ferrero V, Barrett SCH, Castro S, Caldeirinha P, Navarro L, Loureiro J, Rodriguez-Echeverria S (2015) Invasion genetics of the Bermuda buttercup (Oxalis pes-caprae): complex intercontinental patterns of genetic diversity, polyploidy and heterostyly characterize both native and introduced populations. Mol Ecol 24:2143–2155. doi: 10.1111/mec.13056 CrossRefPubMedGoogle Scholar
  22. Frantzen J, Rossi F, Müller-Schärer H (2002) Integration of biological control of common groundsel (Senecio vulgaris) and chemical control. Weed Sci 50:787–793. doi: 10.1614/0043-1745(2002)050[0787:IOBCOC]2.0.CO;2
  23. Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14:4275–4285. doi: 10.1111/j.1365-294X.2005.02750.x CrossRefPubMedGoogle Scholar
  24. Gillespie JH (2004) Population genetics: a concise guide, 2nd edn. Jonhs Hopkins Universtiy Press, BaltimoreGoogle Scholar
  25. Gillis NK, Walters LJ, Fernandes FC, Hoffman EA (2009) Higher genetic diversity in introduced than in native populations of the mussel Mytella charruana: evidence of population admixture at introduction sites. Divers Distrib 15:784–795. doi: 10.1111/j.1472-4642.2009.00591.x CrossRefGoogle Scholar
  26. Golding GB, Strobeck C (1980) Linkage disequilibrium in a finite population that is partially selfing. Genetics 94:777–789PubMedPubMedCentralGoogle Scholar
  27. Grace BS, Müller-Schärer H (2003) Biological control of Senecio vulgaris in carrots (Daucus carota) with the rust fungus Puccinia lagenophorae. Basic Appl Ecol 4:375–384. doi: 10.1078/1439-1791-00171
  28. Haldimann P, Steinger T, Müller-Schärer H (2003) Low genetic differentiation among seasonal cohorts in Senecio vulgaris as revealed by amplified fragment length polymorphism analysis. Mol Ecol 12:2541–2551. doi: 10.1046/j.1365-294X.2003.01915.x CrossRefPubMedGoogle Scholar
  29. Handley RJ, Steinger T, Treier UA, Müller-Schärer H (2008) Testing the evolution of increased competitive ability (EICA) hypothesis in a novel framework. Ecology 89:407–417. doi: 10.1890/07-0160.1 CrossRefPubMedGoogle Scholar
  30. Henry P, Le Lay G, Goudet J, Guisan A, Jahodova S, Besnard G (2009) Reduced genetic diversity, increased isolation and multiple introductions of invasive giant hogweed in the western Swiss Alps. Mol Ecol 18:2819–2831. doi: 10.1111/j.1365-294X.2009.04237.x CrossRefPubMedGoogle Scholar
  31. Husband BC, Barrett SCH (1991) Colonization history and population genetic structure of Eichhornia paniculata in Jamaica. Heredity 66:287–296. doi: 10.1038/hdy.1991.36 CrossRefGoogle Scholar
  32. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914. doi: 10.2307/2640449 CrossRefGoogle Scholar
  33. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi: 10.1093/bioinformatics/btm233 CrossRefPubMedGoogle Scholar
  34. Kadereit JW (1984) The origin of Senecio vulgaris (Asteraceae). Plant Syst Evol 145:135–153. doi: 10.1007/bf00984036 CrossRefGoogle Scholar
  35. Kelager A, Pedersen JS, Bruun HH (2013) Multiple introductions and no loss of genetic diversity: invasion history of Japanese rose, Rosa rugosa, in Europe. Biol Invasions 15:1125–1141. doi: 10.1007/s10530-012-0356-0 CrossRefGoogle Scholar
  36. Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11:852–866. doi: 10.1111/j.1461-0248.2008.01188.x CrossRefPubMedGoogle Scholar
  37. Kliber A, Eckert CG (2005) Interaction between founder effect and selection during biological invasion in an aquatic plant. Evolution 59:1900–1913PubMedGoogle Scholar
  38. Kolbe JJ, Glor RE, Schettino LRG, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181. doi: 10.1038/nature02807 CrossRefPubMedGoogle Scholar
  39. Lewontin RC (1984) Detecting population differences in quantitative characters as opposed to gene frequencies. Am Nat 123:115–124. doi: 10.1086/284190 CrossRefGoogle Scholar
  40. Li X-M, Liao W-J, Wolfe LM, Zhang D-Y (2012) No evolutionary shift in the mating system of North American Ambrosia artemisiifolia (Asteraceae) following its introduction to China. PLoS ONE 7:e31935. doi: 10.1371/journal.pone.0031935 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Liao W-J, Zhu B-R, Zeng Y-F, Zhang D-Y (2008) TETRA: an improved program for population genetic analysis of allotetraploid microsatellite data. Mol Ecol Resour 8:1260–1262. doi: 10.1111/j.1755-0998.2008.02198.x CrossRefPubMedGoogle Scholar
  42. Liu GQ, Hegarty MJ, Edwards KJ, Hiscock SJ, Abbott RJ (2004) Isolation and characterization of microsatellite loci in Senecio. Mol Ecol Notes 4:611–614. doi: 10.1111/j.1477-8286.2004.00753.x CrossRefGoogle Scholar
  43. Marshall DF, Abbott RJ (1982) Polymorphism for outcrossing frequency at the ray floret locus in Senecio vulgaris L. 1. Evid Hered 48:227–235. doi: 10.1038/hdy.1982.28 CrossRefGoogle Scholar
  44. Martins PS, Jain SK (1979) Role of genetic variation in the colonizing ability of rose clover (Trifolium hirtum All.). Am Nat 114:591–595. doi: 10.1086/283505 CrossRefGoogle Scholar
  45. McCauley E (1993) Internal versus external causes of dynamics in a fresh-water plant-herbivore system. Am Nat 141:428–439. doi: 10.1086/285482 CrossRefGoogle Scholar
  46. Mitich LW (1995) Common groundsel (Senecio vulgaris). Weed Technol 9:209–211Google Scholar
  47. Muirhead JR, Gray DK, Kelly DW, Ellis SM, Heath DD, Macisaac HJ (2008) Identifying the source of species invasions: sampling intensity vs. genetic diversity. Mol Ecol 17:1020–1035. doi: 10.1111/j.1365-294X.2008.03669.x CrossRefPubMedGoogle Scholar
  48. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323. doi: 10.1073/pnas.70.12.3321 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nordborg M (2000) Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics 154:923–929PubMedPubMedCentralGoogle Scholar
  50. Novak SJ, Mack RN (1993) Genetic variation in Bromus tectorum (Poaceae): comparison between native and introduced populations. Heredity 71:167–176. doi: 10.1038/hdy.1993.121 CrossRefGoogle Scholar
  51. Novak SJ, Mack RN (2005) Genetic bottlenecks in alien plant species: influences of mating systems and introduction dynamics. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: Insights into ecology, evolution, and biogeography. Sinauer Associates, Sunderland, pp 201–228Google Scholar
  52. Pannell JR (2015) Evolution of the mating system in colonizing plants. Mol Ecol 24:2018–2037. doi: 10.1111/mec.13087 CrossRefPubMedGoogle Scholar
  53. Pannell JR, Barrett SCH (1998) Baker’s law revisited: reproductive assurance in a metapopulation. Evolution 52:657–668. doi: 10.2307/2411261 CrossRefGoogle Scholar
  54. Petanidou T, Godfree RC, Song DS, Kantsa A, Dupont YL, Waser NM (2012) Self-compatibility and plant invasiveness: comparing species in native and invasive ranges. Perspect Plant Ecol Evol Syst 14:3–12. doi: 10.1016/j.ppees.2011.08.003 CrossRefGoogle Scholar
  55. Prentis PJ, Sigg DP, Raghu S, Dhileepan K, Pavasovic A, Lowe AJ (2009) Understanding invasion history: genetic structure and diversity of two globally invasive plants and implications for their management. Divers Distrib 15:822–830. doi: 10.1111/j.1472-4642.2009.00592.x CrossRefGoogle Scholar
  56. Rambuda TD, Johnson SD (2004) Breeding systems of invasive alien plants in South Africa: Does Baker’s rule apply? Divers Distrib 10:409–416. doi: 10.1111/j.1366-9516.2004.00100.x CrossRefGoogle Scholar
  57. Ray A, Quader S (2014) Genetic diversity and population structure of Lantana camara in India indicates multiple introductions and gene flow. Plant Biol 16:651–658. doi: 10.1111/plb.12087 CrossRefPubMedGoogle Scholar
  58. Robinson DE, O’Donovan JT, Sharma MP, Doohan DJ, Figueroa R (2003) The biology of Canadian weeds. 123. Senecio vulgaris L. Can J Plant Sci 83:629–644CrossRefGoogle Scholar
  59. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi: 10.1016/j.tree.2007.07.002 CrossRefPubMedGoogle Scholar
  60. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  61. Steinger T, Haldimann P, Leiss KA, Muller-Scharer H (2002) Does natural selection promote population divergence? A comparative analysis of population structure using amplified fragment length polymorphism markers and quantitative traits. Mol Ecol 11:2583–2590. doi: 10.1046/j.1365-294X.2002.01653.x CrossRefPubMedGoogle Scholar
  62. R Core Team (2015) R: a language and environment for statistical computing.
  63. Van Puyvelde K, Van Geert A, Triest L (2010) ATETRA, a new software program to analyse tetraploid microsatellite data: comparison with TETRA and TETRASAT. Mol Ecol Resour 10:331–334. doi: 10.1111/j.1755-0998.2009.02748.x CrossRefGoogle Scholar
  64. Xu HG, Qiang S (2004) Inventory invasive alien species in China. China Environmental Science Press, BeijingGoogle Scholar
  65. Zhang Y-Y, Zhang D-Y, Barrett SCH (2010) Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Mol Ecol 19:1774–1786. doi: 10.1111/j.1365-294X.2010.04609.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life SciencesBeijing Normal UniversityBeijingChina
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada

Personalised recommendations