Mapping an invasive bryophyte species using hyperspectral remote sensing data

Abstract

Reliable distribution maps are crucial for the management of invasive plant species. An alternative to traditional field surveys is the use of remote sensing data, which allows coverage of large areas. However, most remote sensing studies on invasive plant species focus on mapping large stands of easily detectable study species. In this study, we used hyperspectral remote sensing data in combination with field data to derive a distribution map of an invasive bryophyte species, Campylopus introflexus, on the island of Sylt in Northern Germany. We collected plant cover data on 57 plots to calibrate the model and presence/absence data of C. introflexus on another 150 plots for independent validation. We simultaneously acquired airborne hyperspectral (APEX) images during summer 2014, providing 285 spectral bands. We used a Maxent modelling approach to map the distribution of C. introflexus. Although C. introflexus is a small and inconspicuous species, we were able to map its distribution with an overall accuracy of 75 %. Reducing the sampling effort from 57 to 7 plots, our models performed fairly well until sampling effort dropped below 12 plots. The model predicts that C. introflexus is present in about one quarter of the pixels in our study area. The highest percentage of C. introflexus is predicted in the dune grassland. Our findings suggest that hyperspectral remote sensing data have the potential to provide reliable information about the degree of bryophyte invasion, and thus provide an alternative to traditional field mapping approaches over large areas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Andrew M, Ustin S (2008) The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens Environ 112:4301–4317. doi:10.1016/j.rse.2008.07.016

    Article  Google Scholar 

  2. Asner GP (1997) Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens Environ 64:234

    Article  Google Scholar 

  3. Asner GP (2013) Biological diversity mapping comes of age. Remote Sens 5:374–376. doi:10.3390/rs5010374

    Article  Google Scholar 

  4. Atkinson JT, Ismail R, Robertson M (2014) Mapping Bugweed (Solanum mauritianum) infestations in Pinus patula plantations using hyperspectral imagery and support vector machines. Sel Top Appl Earth Obs Remote Sens IEEE J 7:17–28. doi:10.1109/JSTARS.2013.2257988

    Article  Google Scholar 

  5. Baldeck CA, Asner GP (2014) Improving remote species identification through efficient training data collection. Remote Sens 6:2682–2698. doi:10.3390/rs6042682

    Article  Google Scholar 

  6. Bartels M (2013) Die wanderdünen auf sylt—von der bekämpfung bis zum schutz eines naturphänomens. In: Collet D, Jakubowski-Tiessen M (eds) Schauplätze der umweltgeschichte in Schleswig-Holstein. Universitätsverlag Göttingen, Göttingen, pp 17–28

    Google Scholar 

  7. Benkert D (1971) Campylopus introflexus (Hedw.) auch in Mitteleuropa. Feddes Repert 81:651–654

    Article  Google Scholar 

  8. BGR (2009) Bodenübersichtskarte 1: 200 000. Bundesamt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  9. Biermann R, Daniels FJA (1997) Changes in a lichen-rich dry sand grassland vegetation with special reference to lichen synusiae and Campylopus introflexus. Phytocoenologia 27:257–273. doi:10.1127/phyto/27/1997/257

    Article  Google Scholar 

  10. Bivand R, Keitt T, Rowlingson B (2015) Rgdal: bindings for the geospatial data. Abstraction library. R Package Version 1.0-7. http://CRAN.R-project.org/package=rgdal

  11. Boxel JH, Jungerius PD, Kieffer N, Hampele N (1997) Ecological effects of reactivation of artificially stabilized blowouts in coastal dunes. J Coast Conserv 3:57–62. doi:10.1007/BF02908179

    Article  Google Scholar 

  12. Bradley BA (2013) Remote detection of invasive plants: a review of spectral, textural and phenological approaches. Biol Invasions 16:1411–1425. doi:10.1007/s10530-013-0578-9

    Article  Google Scholar 

  13. Düll R, Meinunger L (1989) Deutschlands moose. IDH-Verlag, Bad Münstereifel

    Google Scholar 

  14. DWD (2015) cdc_node @ www.dwd.de. In: Clim. data Cent. http://www.dwd.de/DE/klimaumwelt/cdc/cdc_node.html. Accessed 25 Jan 2016

  15. Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. doi:10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  16. Essl F, Lambdon PW (2009) Alien bryophytes and lichens of Europe. In: Handbook of Alien Species in Europe. Springer, pp 29–41

  17. Essl F, Steinbauer K, Dullinger S et al (2014) Little, but increasing evidence of impacts by alien bryophytes. Biol Invasions 16:1175–1184. doi:10.1007/s10530-013-0572-2

    Article  Google Scholar 

  18. Fitzpatrick MC, Preisser EL, Ellison AM, Elkiton JS (2009) Observer bias and the detection of low-density populations. Ecol Appl 19:1673–1679. doi:10.1890/09-0265.1

    Article  PubMed  Google Scholar 

  19. Frahm J-P (1971) Campylopus introflexus (Hedw.) Brid. Neu für Dänemark Lindbergia 1:117–118

    Google Scholar 

  20. Frahm J-P (1972) Die Ausbreitung von Campylopus introflexus (Hedw.) Brid. in Mitteleuropa. Herzogia 2:317–330

    Google Scholar 

  21. Geelen L, Salman A, Kuipers M (2015) Dynamic dunes 2015: daring solutions for Natura 2000 challenges. Waternet, Amsterdam

  22. Hahn D (2006) Neophyten der Ostfriesischen Inseln. Dissertation, University of Hannover

  23. Hasse T (2007) Campylopus introflexus invasion in a dune grassland: succession, disturbance and relevance of existing plant invader concepts. Herzogia 20:305–315

    Google Scholar 

  24. He KS, Rocchini D, Neteler M, Nagendra H (2011) Benefits of hyperspectral remote sensing for tracking plant invasions. Divers Distrib 17:381–392. doi:10.1111/j.1472-4642.2011.00761.x

    Article  Google Scholar 

  25. Hijmans RJ (2015) Raster: geographic data analysis and modeling. R Package Version 2.4-20. http://CRAN.R-project.org/package=raster

  26. Huang C, Asner GP (2009) Applications of remote sensing to alien invasive plant studies. Sensors 9:4869–4889. doi:10.3390/s90604869

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ishii J, Washitani I (2013) Early detection of the invasive alien plant Solidago altissima in moist tall grassland using hyperspectral imagery. Int J Remote Sens 34:5926–5936. doi:10.1080/01431161.2013.799790

    Article  Google Scholar 

  28. Ketner-Oostra R, Sýkora KV (2000) Vegetation succession and lichen diversity on dry coastal calcium- poor dunes and the impact of management experiments. J Coast Conserv 6:191–206. doi:10.1007/BF02913815

    Article  Google Scholar 

  29. Ketner-Oostra R, Sýkora KV (2004) Decline of lichen-diversity in calcium-poor coastal dune vegetation since the 1970s, related to grass and moss encroachment. Phytocoenologia 34:521–549. doi:10.1127/0340-269X/2004/0034-0521

    Article  Google Scholar 

  30. Klinck J (2009) The alien invasive moss Campylopus introflexus in the Danish coastal dune system. Master Thesis, Copenhagen University

  31. Kumar L, Schmidt K, Dury S, Skidmore A (2002) Imaging spectrometry and vegetation science. In: FD van der Meer, SM de Jong (eds) Imaging spectrometry. Springer, Netherlands, pp 111–155

    Google Scholar 

  32. Lass LW, Prather TS, Glenn NF et al (2005) A review of remote sensing of invasive weeds and example of the early detection of spotted knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) with a hyperspectral sensor. Weed Sci 53:242–251. doi:10.1614/WS-04-044R2

    CAS  Article  Google Scholar 

  33. Leguan P (2012) Kartierung der salzwiesen und dünen an der westküste von Schleswig-Holstein 2011–2012—biotopkartierung sylt. Landesamt für Landwirtschaft, Umwelt und ländliche Räume (LLUR), Hamburg

  34. Mateo G, Broennimann O, Petitpierre B et al (2014) What is the potential of spread in invasive bryophytes ? Ecography 38(5):1–8. doi:10.1111/ecog.01014

    Google Scholar 

  35. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop) 36:1058–1069. doi:10.1111/j.1600-0587.2013.07872.x

    Article  Google Scholar 

  36. Mirik M, Ansley RJ, Steddom K et al (2013) Remote distinction of a noxious weed (Musk Thistle: Carduus nutans) using airborne hyperspectral imagery and the support vector machine classifier. Remote Sens 5:612–630. doi:10.3390/rs5020612

    Article  Google Scholar 

  37. Neu F (1968) Das mediterran-atlantische Laubmoos Camyplopus introflexus im Münsterland. Natur und Heimat 28:124–125

    Google Scholar 

  38. Ollinger SV (2011) Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol 189:375–394. doi:10.1111/j.1469-8137.2010.03536.x

    CAS  Article  PubMed  Google Scholar 

  39. Petersen J, Kers B, Stock M (2014) TMAP—Typology of coastal vegetation in the wadden sea area. Wadden Sea Ecosyst 32. Common Wadden Sea Secretariat (CWSS), Wilhelmshaven

    Google Scholar 

  40. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the twenty-first international conference machine learning, pp 655–662. doi:10.1145/1015330.1015412

  41. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  42. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  43. Rabitsch W, Isermann M, Karasch P, Nehring S (2016) Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde Moose, Pilze und Flechten, BfN-Skripten (in prep.)

  44. Richards PW (1963) Campylopus introflexus (Hedw.) Brid. and C. polytrichoides De Not. in the British Isles; a preliminary account. Trans Br Bryol Soc 4:404–417

    Article  Google Scholar 

  45. Schirmel J, Timler L, Buchholz S (2011) Impact of the invasive moss Campylopus introflexus on carabid beetles (Coleoptera: Carabidae) and spiders (Araneae) in acidic coastal dunes at the southern Baltic sea. Biol Invasions 13:605–620. doi:10.1007/s10530-010-9852-2

    Article  Google Scholar 

  46. Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66. doi:10.1016/j.tree.2012.07.013

    Article  PubMed  Google Scholar 

  47. Sparrius LB, Kooijman AM (2011) Invasiveness of Campylopus introflexus in drift sands depends on nitrogen deposition and soil organic matter. Appl Veg Sci 14:221–229. doi:10.1111/j.1654-109X.2010.01120.x

    Article  Google Scholar 

  48. Sparrius LB, Kooijman AM (2012) Invasie van Grijs kronkelsteeltje in kustduinen en stuifzanden. Rapport nr. 2012/OBN156-DKDZ. Ministerie van EZ, Driebergen

  49. Starfinger U, Kowarik I, Isermann M (2003) Campylopus introflexus. Neobiota. http://www.neobiota.de/12652.html. Accessed 25 Jan 2016

  50. Underwood E, Ustin S, DiPietro D (2003) Mapping nonnative plants using hyperspectral imagery. Remote Sens Environ 86:150–161. doi:10.1016/S0034-4257(03)00096-8

    Article  Google Scholar 

  51. van Turnhout C (2005) Het verdwijnen van de Duinpieper als broedvogel uit Nederland en Noordwest-Europa. Limosa 78:1–14

    Google Scholar 

  52. VITO (2014) APEX 2014—SYLT campaign data delivery report. VITO, Mol

    Google Scholar 

  53. Vogels J, Nijssen M, Verberk W, Esselink H (2005) Effects of moss-encroachment by Campylopus introflexus on soil-entomofauna of dry-dune. Proc Neth Entmol Soc Meet 16:71–80

    Google Scholar 

Download references

Acknowledgments

This study is part of the ERA-Net BiodivERsA project DIARS (Detection of Invasive plant species and Assessment of their impact on ecosystem properties through Remote Sensing) with the national funders ANR (Agence Nationale de la Recherché), BelSPO (Belgian Federal Science Policy Office) and DFG (Deutsche Forschungsgemeinschaft). Sandra Skowronek is funded through DFG research grant FE 1331/3-1. The authors would like to thank the nature conservation authority of Northern Friesland and the private land owners for granting us permission to conduct research in the protected dune heathlands on the island of Sylt. Many thanks to Emily Jane Francis and Carol Garzon for proofreading the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandra Skowronek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skowronek, S., Ewald, M., Isermann, M. et al. Mapping an invasive bryophyte species using hyperspectral remote sensing data. Biol Invasions 19, 239–254 (2017). https://doi.org/10.1007/s10530-016-1276-1

Download citation

Keywords

  • Campylopus introflexus
  • Dunes
  • Heathland
  • Imaging spectroscopy
  • Maxent
  • Moss